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Warning

These lectures notes are currently being written and far from com-
plete. My objective is first to provide a preliminary draft for each
chapter. In a second time, I will improve the English text of the
manuscript and illustrate with more examples and data. Correc-
tions and comments are then welcome!

Three decades of financial regulation

Two decades of risk management

One decade of financial instability

About these lecture notes

These lecture notes are divided into three parts. After an introductory
chapter presenting the main concepts of risk management and an overview
of the financial regulation, the first part is dedicated to the risk management
in the banking sector and consists of six chapters: market risk, credit risk,
counterparty credit risk and collateral risk, operational risk, liquidity risk and
asset/liability management risk. We begin with the market risk, because it
permits to introduce naturally the concepts of risk factor and risk measure
and to define the risk allocation approach. For each chapter, we present the
corresponding regulation framework and the risk management tools. The sec-
ond part is dedicated to non-banking financial sectors with four chapters ded-
icated to insurance, asset management, investors and market infrastructure
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(including central counterparties). This second part ends with a fifth chapter
on systemic risk and shadow banking system. The third part of these lecture
notes develops the mathematical and statistical tools used in risk management.
It contains seven chapters: risk model and derivatives hedging, statistical in-
ference and model estimation, copula functions, extreme value theory, Monte
Carlo simulation, stress testing methods and scoring models. Each chapter
of these lectures notes are extensively illustrated by numerical examples and
contains also tutorial exercises. Finally, a technical appendix completes the
lecture notes and contains some important elements on numerical analysis.

The writing of these lectures notes started in April 2015 and is the result
of fifteen years of academic courses. When I began to teach risk management,
a large part of my course was dedicated to statistical tools. Over the years,
financial regulation became however increasingly important. This is why risk
management is now mainly driven by the regulation, not by the progress with
the mathematical models. The preparation of this book has benefited from
the existing materials of my French book called “La Gestion des Risques Fi-
nanciers”. Nevertheless, the structure of the two books is different, because
my previous book only concerned risk management in the banking sector and
before Basel III. Three years ago, I decided to extend the course to other
financial sectors, especially insurance, asset management and market infras-
tructure. It appears that even if the quantitative tools of risk management
are the same across the different financial areas, each sector presents some
particular aspects. The knowledge of the different regulations is especially not
an easy task for students. However, it is necessary if one would like to un-
derstand what is the role of risk management in financial institutions in the
present-day world. Moreover, reducing the practice of risk management to the
assimilation of the regulation rules is not sufficient. The sound understanding
of the financial products and the mathematical models are essential to know
where the risks are. This is why some parts of this book can be particularly
difficult because risk management is today complex in finance. A companion
book is available in order to facilitate learning and knowledge assimilation at
the following internet web page:

http://www.thierry-roncalli.com/RiskManagement.html

It contains additional information like some detailed calculation and the so-
lution of the tutorial exercises.
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C (or ρ) Correlation matrix
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C⊥ Product copula
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CE (t0) Current exposure at time t0
cov (X) Covariance of the random
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iosyncratic risks
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A
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∆t Delta of the option at time

t
∆h Difference operator with

lag h, e.g. ∆hVt = Vt−Vt−h
∆ CoVaRi Delta CoVaR of Institu-
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∆tm Time interval tm = tm−1
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E [X] Mathematical expectation
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R (Π) Risk measure of P&L Π
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S Stress scenario
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σi Volatility of asset i
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Student’s t distribution
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tr (A) Trace of the matrix A
θ Vector of parameters
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t
τ Default time
τ Time to maturity T − t
var (X) Variance of the random

variable X
VaRα (w) Value-at-risk of portfolio w

at the confidence level α



xxiii

υt Vega of the option t
w Vector of weights
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lio w
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CP Consultation paper
CRA Credit rating agency
CRD Capital requirements direc-

tive
CRR Capital requirements regula-

tion
CRM Comprehensive risk measure
CVA Credit valuation adjustment
DVA Debit valuation adjustment
EAD Exposure at default
EBA European Banking Author-

ity
ECB European Central Bank
EE Expected exposure
EEE Effective expected exposure
EEPE Effective expected positive

exposure
EL Expected loss
EMIR European market infrastruc-

ture regulation
ENE Expected negative exposure
EPE Expected positive exposure



xxiv

ESMA European Securities and
Markets Authority

ETF Exchange traded fund
EVT Extreme value theory
FASB Financial Accounting Stan-

dards Board
FIRB Foundation internal rating-

based approach (credit risk)
FRTB Fundamental review of the

trading book
FSB Financial Stability Board
FtD First-to-default swap
FVA Founding valuation adjust-

ment
GAAP Generally accepted account-

ing principles (US)
GEV Generalized extreme value

distribution
GFC Global financial crisis
GMM Generalized method of mo-

ments
GPD Generalized Pareto distribu-

tion
HF Hedge fund
HLA Higher loss absorbency
HQLA High-quality liquid assets
HY High yield entities
IAIS International Association of

Insurance Supervisors
IAS International accounting

standard
ICAAP Internal capital adequacy

assessment process
ICP Insurance Core Principles
ICPF Insurance companies and

pension funds
IFRS International financial re-

porting standard
IG Investment grade entities
IMA Internal model-based ap-

proach (market risk)
IMF International Monetary

Fund
IMM Internal model method

(counterparty credit risk)

IOSCO International Organization
of Securities Commissions

IRB Internal rating-based ap-
proach (credit risk)

IRC Incremental risk charge
IRS Interest rate swap
IRRBB Interest rate risk of the

banking book
ISDA International Swaps and

Derivatives Association
KRI Key risk indicator
LCR Liquidity coverage ratio
LDA Loss distribution approach
LDCE Loss data collection exercise
LEE Loan equivalent exposure
LGD Loss given default
M Effective maturity
MBS Mortgage-backed security
MCR Minimum capital require-

ment
MDA Maximum domain of attrac-

tion
MES Marginal expected shortfall
MF Mutual fund
MiFID Markets in financial instru-

ments directive
MiFIR Markets in financial instru-

ments regulation
ML Maximum likelihood
MM Method of moments
MMF Money market fund
MPE Maximum peak exposure
MtM Mark-to-market
NQD Negative quadrant depen-

dence
NSFR Net stable funding ratio
ORSA Own risk and solvency as-

sessment
OTC Over-the-counter
PD Probability of Default
PDF Probability density function
PE Peak exposure
PFE Potential future exposure
PMF Probability mass function
POT Peak over threshold



xxv

PQD Positive quadrant depen-
dence

QIS Quantitative impact study
RBC Risk-based capital (US in-

surance)
RMBS Residential mortgage-

backed security
RW Risk weight
RWA Risk-weighted asset
SA Standardized approach

(credit risk)
SA-CCRStandardized approach

(counterparty credit risk)
SBE Shadow banking entity
SCR Solvency capital require-

ment
SES Systemic expected shortfall
SIFMA Securities Industry and Fi-

nancial Markets Association
SIFI Systemically important fi-

nancial institution
SIV Structured investment vehi-

cle
SLA Single loss approximation
SME Small and medium-sized en-

terprises
SM-CCR Standardized method

(counterparty credit risk)

SMM Standardized measurement
method (market risk)

SRC Specific risk charge
SREP Supervisory review and eval-

uation process
SRISK Systemic risk contribution
SRP Supervisory review process
SSM Single supervisory mecha-

nism
SVaR Stressed value-at-risk
SPV Special purpose vehicle
T1 Tier 1
T2 Tier 2
TLAC Total loss absorbing capac-

ity
TSA The standardized approach

(operational risk)
UCITS Undertakings for collective

investment in transferable
securities (directive)

UCVA Unilateral CVA
UDVA Unilateral DVA
UL Unexpected loss
VaR Value-at-risk
XO Crossover (or sub-

investment grade) entities

Other scientific conventions
YYYY-MM-DD We use the international standard date notation where

YYYY is the year in the usual Gregorian calendar, MM
is the month of the year between 01 (January) and 12
(December), and DD is the day of the month between
01 and 31.

$1 mn One million dollars.
$1 bn One billion dollars.
$1 tn One trillion dollars.





Chapter 1
Introduction

The idea that risk management creates value is largely accepted today. How-
ever, this has not always been the case in the past, especially in the financial
sector (Stulz, 1996). Rather, it has been a long march marked by a number of
decisive steps. In this introduction, we present an outline of the most impor-
tant achievements from a historical point of view. We also give an overview
of the current financial regulation, which is a cornerstone in financial risk
management.

1.1 The need for risk management

The need for risk management is the title of the first section of the leader-
ship book by Jorion (2007), who shows that risk management can be justified
at two levels. At the firm level, risk management is essential for identifying
and managing business risk. At the industry level, risk management is a cen-
tral factor for understanding and preventing systemic risk. In particular, this
second need is the ‘raison d’être’ of the financial regulation itself.

1.1.1 Risk management and the financial system

The concept of risk management has evolved considerably since its cre-
ation, which is believed to be in the early fifties1. In November 1955, Wayne
Snider gave a lecture entitled “The Risk Manager” where he proposed creat-
ing an integrated department responsible for risk prevention in the insurance
industry (Snider, 1956). Some months later, Gallagher (1956) published an
article to outline the most important principles of risk management and to
propose the hiring of a full-time risk manager in large companies. For a long
time, risk management was systematically associated with insurance manage-
ment, both from a practical point of view and a theoretical point of view. For
instance, the book of Mehr and Hedges (1963) is largely dedicated to the field
of insurance with very few applications to other industries. This is explained

1See Crockford (1982) or Snider (1991) for a retrospective view on the risk management
development.
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by the fact that the collective risk model has helped to apply the mathemati-
cal and statistical tools for measuring risk in insurance companies since 1930.
A new discipline known as actuarial science has been developed at the same
time outside the other sciences and has supported the generalization of risk
management in the insurance industry.

Simultaneously, risk became an important field of research in economics
and finance. Indeed, Arrow (1964) made an important step by extending the
Arrow-Debreu model of general equilibrium in an uncertain environment2. In
particular, he showed the importance of hedging and introduced the concept
of payoff. By developing the theory of optimal allocation for a universe of
financial securities, Markowitz (1952) pointed out that the risk of a financial
portfolio can be diversified. These two concepts, hedging and diversification,
together with insurance, are the main pillars of modern risk management.
These concepts will be intensively used by academics in the 1960s and 1970s.
In particular, Black and Scholes (1973) will show the interconnection between
hedging and pricing problems. Their work will have a strong impact on the
development of equity, interest rates, currency and commodity derivatives,
which are today essential for managing the risk of financial institutions. With
the Markowitz model, a new era had begun in portfolio management and
asset pricing. First, Sharpe (1964) showed how risk premia are related to
non-diversifiable risks and developed the first asset pricing model. Then, Ross
(1976) extended the CAPM model of Sharpe and highlighted the role of risk
factors in arbitrage pricing theory. These academic achievements will support
the further development of asset management, financial markets and invest-
ment banking.

In commercial and retail banking, risk management was not integrated
until recently. Even though credit scoring models have existed since the fifties,
they were rather designed for consumer lending, especially credit cards. When
banks used them for loans and credit issuances, they were greatly simplified
and considered as a decision-making tool, playing a minor role in the final
decision. The underlying idea was that the banker knew his client better than
a statistical model could. However, Banker Trust introduced the concept of
risk-adjusted return on capital or RAROC under the initiative of Charles
Sanford in the late 1970’s for measuring risk-adjusted profitability. Gene Guill
mentions a memorandum dated February 1979 by Charles Sanford to the head
of bank supervision at the Federal Reserve Board of New York that helps to
understand the RAROC approach:

“We agree that one bank’s book equity to assets ratio has lit-
tle relevance for another bank with a different mix of businesses.
Certain activities are inherently riskier than others and more risk
capital is required to sustain them. The truly scarce resource is
equity, not assets, which is why we prefer to compare and measure

2This paper was originally presented in 1952 and was also published in Cahiers du CNRS
(1953).
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businesses on the basis of return on equity rather than return on
assets” (Guill, 2009, page 10).

RAROC compares the expected return to the economic capital and has be-
come a standard model for combining performance management and risk man-
agement. Even if RAROC is a global approach for allocating capital between
business lines, it has been mainly used as a credit scoring model. Another
milestone was the development of credit portfolio management when Vasicek
(1987) adapted the structural default risk model of Merton (1974) to model
the loss distribution of a loan portfolio. He then jointly founded KMV Cor-
poration with Stephen Kealhofer and John McQuown, which specializes in
quantitative credit analysis tools and is now part of Moody’s Analytics.

In addition to credit risk, commercial and retail banks have to manage
interest rate and liquidity risks, because their primary activity is to do as-
set, liquidity and maturity transformations. Typically, a commercial bank has
long-term and illiquid liabilities (loans) and short-term and liquid assets (de-
posits). In such a situation, a bank faces a loss risk that can be partially
hedged. This is the role of asset-liability management(ALM). But depositors
also face a loss risk that is virtually impossible to monitor and manage. Con-
sequently, there is an information asymmetry between banks and depositors.

In the banking sector, the main issue centered therefore around the deposit
insurance. How can we protect depositors against the failure of the bank? The
100% reserve proposal by Fisher in 1935 required banks to keep 100% of de-
mand deposit accounts in cash or government-issued money like bills. Diamond
and Dybvig (1983) argued that the mixing policy of liquid and illiquid assets
can rationally produce systemic risks, such as bank runs. A better way to
protect the depositors is to create a deposit insurance guaranteed by the gov-
ernment. According to the Modigliani-Miller theorem on capital structure3,
this type of government guarantee implied a higher cost of equity capital. Since
the eighties, this topic has been highly written about (Admati and Hellwig,
2014). Moreover, banks also differ from other companies, because they cre-
ate money. Therefore, they are at the heart of the monetary policy. These two
characteristics (implicit guarantee and money creation) imply that banks have
to be regulated and need regulatory capital. This is all the more valid with
the huge development of financial innovations, which has profoundly changed
the nature of the banking system and the risk.

1.1.2 The development of financial markets

The development of financial markets has a long history. For instance, the
Chicago Board of Trade (CBOT) listed the first commodity futures contract

3Under some (unrealistic) assumptions, Modigliani and Miller (1958) showed that the
market value of a firm is not affected by how that firm is financed (by issuing stock or
debt). They also established that the cost of equity is a linear function of the firm’s leverage
measured by its debt/equity ratio.
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in 1864 (Carlton, 1984). Some authors even consider that the first organized
futures exchange was the Dojima Rice Market in Osaka in the 18th century
(Schaede, 1989). But the most important breakthrough came in the seventies
with two major financial innovations. In 1972, the Chicago Mercantile Ex-
change (CME) launched currency futures contracts after the US had decided
to abandon the fixed exchange rate system of Bretton Woods (1946). The oil
crisis of 1973 and the need to hedge currency risk have considerably helped
in the development of this market. After commodity and currency contracts,
interest rate and equity index futures have consistently grown. For instance,
US Treasury bond, S&P 500, German Bund, and EURO STOXX 50 futures
were first traded in 1977, 1982, 1988 and 1998 respectively. Today, the Bund
futures contract is the most traded product in the world.

The second main innovation in the seventies concerned option contracts.
The CBOT created the Chicago Board of Options (CBOE) in 1973, which was
the first exchange specialized in listed stock call options. That same year, Black
and Scholes (1973) published their famous formula for pricing a European
option. It has been the starting point of the intensive development of academic
research concerning the pricing of financial derivatives and contingent claims.
The works of Fisher Black, Myron Scholes and Robert Merton4 are all the more
significant in that they consider the pricing problem in terms of risk hedging.
Many authors had previously found a similar pricing formula, but Black and
Scholes introduced the revolutionary concept of the hedging portfolio. In their
model, they derived the corresponding dynamic trading strategy to hedge
the option contract, and the option price is therefore equivalent to the cost
of the hedging strategy. Their pricing method had a great influence on the
development of the derivatives market and more exotic options, in particular
path-dependent options5.

Whereas the primary goal of options is to hedge a directional risk, they will
be largely used as underlying assets of investment products. In 1976, Hayne
Leland and Mark Rubinstein developed the portfolio insurance concept, which
allows for investing in risky assets while protecting the capital of the invest-
ment. In 1980, they founded LOR Associates, Inc. with John O’Brien and pro-
posed structured investment products to institutional investors (Tufano and
Kyrillos, 1995). They achieved very rapid growth until the 1987 stock market
crash6, and were followed by Wells Fargo, J.P. Morgan and Chase Manhattan
as well as other investment banks. This period marks the start of financial
engineering applied to structured products and the development of popular

4As shown by Bernstein (1972), the works of Black and Scholes cannot be dissociated
from the research of Merton (1973). This explains that they both received the 1997 Nobel
Prize in Economics for their option pricing model.

5See Box 1 for more information about the rise of exotic options.
6In fact, portfolio insurance was blamed by the Brady Commission report (1988) for the

stock market crash of October 1987. See for instance Leland and Rubinstein (1988), Shiller
(1988), Gennotte and Leland (1990) and Jacklin et al. (1992) for a discussions about the
impact of portfolio insurance on the October 1987 crash.
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trading strategies, such as constant proportion portfolio insurance (CPPI)
and option based portfolio insurance (OBPI). Later, they will be extensively
used for designing retail investment products, especially capital guaranteed
products.'

&

$

%

Box 1

Evolution of financial innovations

1864 Commodity futures
1970 Mortgage-backed securities
1971 Equity index funds
1972 Foreign currency futures
1973 Stock options
1977 Put options
1979 Over-the-counter currency options
1980 Currency swaps
1981 Interest rate swaps
1982 Equity index futures
1983 Equity index options

Interest rate caps/floors
Collateralized mortgage obligations

1985 Swaptions
Asset-backed securities

1987 Path-dependent options (Asian, Lookback, etc.)
Collateralized debt obligations

1992 Catastrophe insurance futures and options
1993 Captions/Floortions

Exchange-traded funds
1994 Credit default swaps
1997 Weather derivatives
2004 Volatility index futures
2006 Leveraged and inverse ETFs

Source: Jorion (2007) & author’s research.

After options, the next great innovation in risk management was the swap.
In a swap contract, two counterparties exchange a series of cash flows of one
financial instrument for those of another financial instrument. For instance,
an interest rate swap (IRS) is an exchange of interest rate cash flows from
a fixed rate to a floating rate or between two floating rates. Swaps have be-
come an important tool for managing balance sheets, in particular interest
rate and currency risks in the banking book. The original mechanism of cash
flow exchanges has been extended to other instruments and underlying as-
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sets: inflation-indexed bonds, stocks, equity indexes, commodities, etc. But
one of the most significant advances in financial innovations was the creation
of credit default swaps (CDS) in the mid-nineties, and more generally credit
derivatives. In the simplest case, the cash flows depend on the default of a
loan, a bond or a company. We refer then to single-name instruments. Other-
wise, they depend on credit events or credit losses of a portfolio (multi-name
instruments). However, the development of credit derivatives was made possi-
ble thanks to securitization. This is a process through which assets are pooled
in a portfolio and securities representing interests in the portfolio are issued.
Securities backed by mortgages are called mortgage-backed securities (MBS),
while those backed by other types of assets are asset-backed securities (ABS).

Derivatives are traded either in organized markets or in over-the-counter
markets (OTC). In organized exchanges, the contracts are standardized and
the transactions are arranged by the clearing house, which is in charge of clear-
ing and settlement. By contrast, in OTC markets, the contracts are customized
and the trades are done directly by the two counterparties. This implies that
OTC trades are exposed to the default risk of the participants. The location
of derivatives trades depends on the contract:

Contract Futures Forward Option Swap
On-exchange X X
Off-exchange X X X

For instance, the only difference between futures and forwards is that futures
are traded in organized markets whereas forwards are traded over-the-counter.
Contrary to options which are negotiated in both markets, swaps are mainly
traded OTC. In Table 1.1, we report the amounts outstanding of exchange-
traded derivatives concerning futures and options published by the Bank for
International Settlement (2015). In December 2014, their notional is equal to
$64.9 tn, composed of $27.1 tn in futures (41.9%) and $37.7 tn in options
(58.1%). For each instrument, we indicate the split between interest rates,
currencies and equity indices. We notice that exchange-traded derivatives on
interest rates are the main contributor. The evolution of the global notional
is reported in Figure 1.1. The size of exchange-traded derivative markets has
grown rapidly since 2000, peaking in June 2007 with an aggregated amount
of $94.9 tn. This trend ended with the financial crisis.

Statistics concerning OTC derivative markets are given in Table 1.2. On
average, these markets are ten times bigger than exchange-traded markets in
terms of amounts outstanding. In December 2014, the aggregated amount of
forwards, swaps and options is equal to $630.1 tn. Contrary to exchange-traded
derivative markets, notional amounts outstanding in OTC derivative markets
are higher than before the crisis period (Figure 1.2). In terms of instrument,
swaps dominate (66.9% of the total). The main asset class remains fixed-
income assets, but its weight is less than in exchange-traded markets. We also
notice the impact of the 2008 financial crisis on credit default swaps, which
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TABLE 1.1: Amounts outstanding of exchange-traded derivatives

Dec. 2004 Dec. 2007 Dec. 2010 Dec. 2014
Futures 40.8% 35.6% 32.8% 41.9%

Interest rate 96.1% 95.4% 94.2% 93.3%
Currency 0.6% 0.6% 0.8% 0.9%
Equity index 3.3% 4.0% 5.1% 5.8%

Options 59.2% 64.4% 67.2% 58.1%

Interest rate 89.8% 87.2% 89.6% 84.6%
Currency 0.2% 0.3% 0.3% 0.4%
Equity index 10.0% 12.6% 10.0% 15.0%

Total (in $ tn) 46.3 78.9 68.0 64.9

Source: Bank for International Settlement (2015) & author’s calculations.

represented 9.9% of the OTC derivative markets in December 2007. Seven
years later, they will represent only 2.6% of these markets.

TABLE 1.2: Amounts outstanding of OTC derivatives

Dec. 2004 Dec. 2007 Dec. 2010 Dec. 2014
Forwards 11.4% 10.9% 14.0% 19.3%
Swaps 63.9% 65.2% 68.8% 66.9%
Options 14.4% 13.4% 10.6% 10.2%
Unallocated 10.3% 10.5% 6.6% 3.6%

Currency 11.3% 9.6% 9.6% 12.0%
Interest rate 73.7% 67.1% 77.4% 80.2%
Equity 1.7% 1.4% 0.9% 1.3%
Commodity 0.6% 1.4% 0.5% 0.3%
Credit 2.5% 9.9% 5.0% 2.6%
Unallocated 10.3% 10.5% 6.6% 3.6%

Total (in $ tn) 258.6 585.9 601.0 630.1

Source: Bank for International Settlement (2015) & author’s calculations.

Whereas notional amounts outstanding is a statistic to understand the size
of the derivatives markets, the risk and the activity of these markets may be
measured by the gross market value and the turnover:

• The gross market value of outstanding derivatives contracts represents
“the cost of replacing all outstanding contracts at market prices pre-
vailing on the reporting date. It corresponds to the maximum loss that
market participants would incur if all counterparties failed to meet their



8 Lecture Notes on Risk Management & Financial Regulation

FIGURE 1.1: Notional amount of exchange-traded derivatives ((in $ tn)

Source: Bank for International Settlement (2015).

contractual payments and the contracts were replaced at current market
prices” (BIS, 2014).

• The turnover is defined as “the gross value of all new deals entered
into during a given period, and is measured in terms of the nominal
or notional amount of the contracts. It provides a measure of market
activity, and can also be seen as a rough proxy for market liquidity.”
(BIS, 2014).

In December 2014, the gross market value is equal to $20.9 tn for OTC deriva-
tives. It is largely lower than the figure of $35.3 tn in December 2008. This
decrease is explained by less complexity in derivatives, but also by a lower
volatility regime. If we take into account legally enforceable bilateral netting
agreements, the gross counterparty credit is about $3.4 tn. For OTC deriva-
tives, it is difficult to measure a turnover, because the contracts are not stan-
dardized. This statistic is more pertinent for exchange-traded markets. For
the year 2014, it is equal to $1 450.5 tn for futures and $486.0 tn for options.
This means that each day, more than $5 tn of new derivative exposures are
negotiated in exchange-traded markets. The consequence of this huge activity
is a growing number of financial losses for banks and financial institutions.
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FIGURE 1.2: Notional amount of OTC derivatives (in $ tn)

Source: Bank for International Settlement (2015).

1.1.3 Financial crises and systemic risk

A financial institution generally faces five main risks:

• Market risk

• Credit risk

• Counterparty credit risk

• Operational risk

• Liquidity risk

Market risk is the risk of losses due to changes in financial market prices.
We generally distinguish four major types of market risk: equity risk, interest
rate risk, currency risk and commodity risk. These risks are present in trading
activities, but they also affect all activities that use financial assets. Credit risk
is the risk of losses due to the default of a counterparty to fulfill its contractual
obligations, that is to make its required payments. It principally concerns debt
transactions such as loans and bonds. Counterparty credit risk is another form
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of credit risk, but concerns the counterparty of OTC transactions. Examples
include swaps and options, security lending or repo transactions. Operational
risk is the risk of losses resulting from inadequate or failed internal processes,
people and systems, or from external events. Examples of operational risk
are frauds, natural disasters, business disruption, rogue trading, etc. Finally,
liquidity risk is the risk of losses resulting from the failure of the financial
institution to meet its obligations on time.'

&

$

%

Box 2

An history of financial losses

1974 Herstatt Bank: $620 mn (foreign exchange trading)
1994 Metallgesellschaft: $1.3 bn (oil futures)
1994 Orange County: $1.8 bn (reverse repo)
1994 Procter & Gamble: $160 mn (ratchet swap)
1995 Barings Bank: $1.3 bn (stock index futures)
1997 Natwest: $127 mn (swaptions)
1998 LTCM: $4.6 bn (liquidity crisis)
2001 Dexia Bank: $270 mn (corporate bonds)
2006 Amaranth Advisors: $6.5 bn (gaz forward contracts)
2007 Morgan Stanley: $9.0 bn (credit derivatives)
2008 Société Générale: $7.2 bn (rogue trading)
2008 Madoff: $65 bn (fraud)
2011 UBS: $2.0 bn (rogue trading)
2012 JPMorgan Chase: $5.8 bn (credit derivatives)

Source: Jorion (2007) & author’s research.

In Box 2, we have reported some famous financial losses. Most of them are
related to the market risk or the operational risk. In this case, these losses
are said to be idiosyncratic because they are specific to a financial institution.
Idiosyncratic risk is generally opposed to systemic risk: systemic risk refers
to the system whereas idiosyncratic risk refers to an entity of the system.
For instance, the banking system may collapse, because many banks may be
affected by a severe common risk factor and may default at the same time.
In financial theory, we generally make the assumption that idiosyncratic and
common risk factors are independent. However, there exits some situations
where idiosyncratic risk may affect the system itself. It is the case of large
financial institutions, for example the default of big banks. In this situation,
system risk refers to the propagation of a single bank distressed risk to the
other banks.

The case of Herstatt Bank is an example of an idiosyncratic risk that
could result in a systemic risk. Herstatt Bank was a privately German bank.
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On 26 June 1974, the German Banking Supervisory Office withdrew Her-
statt’s banking licence after finding that the bank’s foreign exchange expo-
sures amounted to three times its capital (BCBS, 2014d). This episode of
settlement risk caused heavy losses to other banks, adding a systemic dimen-
sion to the individual failure of Herstatt Bank. In response to this turmoil,
the central bank governors of the G10 countries established the Basel Com-
mittee on Banking Supervision at the end of 1974 with the aim to enhance
the financial stability at the global level.

Even if the default of a non-financial institution is a dramatic event for
employees, depositors, creditors and clients, the big issue is its impact on
the economy. Generally, the failure of a company does not induce a macro-
economic stress and is well located to a particular sector or region. For in-
stance, the decade of the 2000s had faced a lot of bankruptcies, e.g., Pacific
Gas and Electric Company (2001), Enron (2001), WorldCom (2002), Arthur
Andersen (2002), Parmalat (2003), US Airways (2004), Delta Air Lines (2005),
Chrysler (2009), General Motors (2009) and LyondellBasell (2009). However,
the impact of these failures was contained within the immediate environment
of the company and was not spread to the rest of the economy.

In the financial sector, the issue is different because of the interconnect-
edness between the financial institutions and the direct impact on the econ-
omy. And the issue is especially relevant that the list of bankruptcies in fi-
nance is long including, for example: Barings Bank (1995); HIH Insurance
(2001); Conseco (2002); Bear Stearns (2008), Lehman Brothers (2008); Wash-
ington Mutual (2008); DSB Bank (2008). The number of banking and insur-
ance distresses is even more impressive, for example: Northern Rock (2007);
Countrywide Financial (2008); Indy Mac Bank (2008); Fannie Mae/Freddie
Mac (2008); Merrill Lynch (2008); AIG (2008); Wachovia (2008); Depfa Bank
(2008); Fortis (2009); Icelandic banks (2008-2010); Dexia (2011). In Figure
1.3, we report the number of bank failures computed by the Federal Deposit
Insurance Corporation (FDIC), the organization in charge of insuring depos-
itors in the US. We can clearly identify three periods of massive defaults:
1930-1940, 1980-1994 and 2008-2014. Each period corresponds to a banking
crisis7 and lasts long because of delayed effects. Whereas the 1995–2007 period
is characterized by a low default rate, with no default in 2005–2006, there is
a significant number of bank defaults these last years (517 defaults between
2008 and 2014).

The Lehman Brothers collapse is a case study for understanding the sys-
temic risk. Lehman Brothers filed for Chapter 11 bankruptcy protection on
September 15, 2008 after incurring heavy credit and market risk losses implied
by the US subprime mortgage crisis. The amount of losses is generally esti-
mated to be about $600 bn, because Lehman Brothers had at this time $640
bn in assets and $620 bn in debt. However, the cost for the system is far greater

7They are the Great Depression, the savings and loan crisis of the 1980s and the subprime
crisis.
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FIGURE 1.3: Number of bank defaults in the US

Source: Federal Deposit Insurance Corporation (2014), Historical Statistics on
Banking – Failures & Assistance Transactions,
https://www.fdic.gov/bank/individual/failed/.

than this figure. On equity markets, about $10 tn went missing in October
2008. The post-Lehman Brothers default period (from September to Decem-
ber 2008) is certainly one of the most extreme liquidity crisis experienced
since many decades. This forced central banks to use unconventional mone-
tary policy measures by implementing quantitative easing (QE) programmes.
For instance, the Fed now holds more than five times the amount of securities
it had prior before September 2008. The collapse of Lehman Brothers had
a huge impact on the banking industry, but also on the asset management
industry. For instance, four days after the Lehman Brothers bankruptcy, the
US government extended temporary guarantee on money market funds. At
the same time, the hedge funds industry suffered a lot because of the stress
on the financial markets, but also because Lehman Brothers served at prime
broker for many hedge funds.

The bankruptcy of a financial institution can then not be compared to the
bankruptcy of a corporate company. Nevertheless, because of the nature of
the systemic risk, it is extremely difficult to manage it directly. This explains
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that the financial supervision is principally a micro-prudential regulation at
the firm level. This is only recently that it has been completed by macro-
prudential policies in order to mitigate the risk of the financial system as a
whole. While the development of risk management was principally due to the
advancement of internal models before the 2008 financial crisis, it is now driven
by the financial regulation, which complectly reshapes the finance industry.

1.2 Financial regulation

The purpose of supervision and regulatory capital has been to control
the riskiness of individual banks and to increase the stability of the financial
system. As explained in the previous section, it is a hard task whose bounds
are not well defined. Among all the institutions that are participating to this
work, four international authorities have primary responsibility of the financial
regulation:

1. The Basel Committee on Banking Supervision (BCBS)

2. The International Association of Insurance Supervisors (IAIS)

3. The International Organization of Securities Commissions (IOSCO)

4. The Financial Stability Board (FSB)

The Basel Committee on Banking Supervision provides a forum for regular
cooperation on banking supervisory matters. Its main objective is to improve
the quality of banking supervision worldwide. The International Association
of Insurance Supervisors is the equivalent of the Basel Committee for the in-
surance industry. Its goal is to coordinate local regulations and to promote a
consistent and global supervision for insurance companies. The International
Organization of Securities Commissions is the international body that devel-
ops and implements standards and rules for securities and market regulation.
While these three authorities are dedicated to a specific financial industry
(banks, insurers and markets), the FSB is an international body that makes
recommendations about the systemic risk of the global financial system. In
particular, it is in charge of defining systemically important financial institu-
tions or SIFIs.

These four international bodies define standards at the global level and
promote convergence between local supervision. The implementation of the
rules is the responsibility of national supervisors. In the case of the European
Union, they are the European Banking Authority (EBA), the European Insur-
ance and Occupational Pensions Authority (EIOPA), the European Securities
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and Markets Authority (ESMA) and the European System of Financial Super-
vision (ESFS). A fifth authority, the European Systemic Risk Board (ESRB),
completes the European supervision system.

The equivalent authorities in the US are the Board of Governors of the
Federal Reserve System, also known as the Federal Reserve Board (FRB),
the Federal Insurance Office (FIO) and the Securities and Exchange Commis-
sion (SEC). In fact, the financial supervision is more complicated in US as
shown by Jickling and Murphy (2010). The supervisor of banks is tradition-
ally the Federal Deposit Insurance Corporation (FDIC) for federal banks and
the Office of the Comptroller of the Currency (OCC) for national banks. How-
ever, the Dodd-Frank Act created the Financial Stability Oversight Council
(FSOC) to monitor systemic risk. For banks and other financial institutions
designated by the FSOC as SIFI, the supervision is directly done by the FRB.
The supervision of markets is shared between the SEC and the Commodity
Futures Trading Commission (CFTC), which supervises derivatives trading
including futures and options8.

TABLE 1.3: The supervision institutions in finance

Banks Insurers Markets All sectors
Global BCBS IAIS IOSCO FSB
EU EBA/ECB EIOPA ESMA FRB
US FDIC/FRB FIO SEC ESFS

1.2.1 Banking regulation

The evolution of the banking supervision has highly evolved since the end
of the eighties. Here are the principal dates:

1988 Publication of “International Convergence of Capital Measure-
ment and Capital Standards”, which is better known as “The
Basel Capital Accord”. This text sets the rules of the Cooke
ratio.

1993 Development of the Capital Adequacy Directive (CAD) by the
European Commission.

1996 Publication of “Amendment to the Capital Accord to incor-
porate Market Risks”. This text includes the market risk to
compute the Cooke ratio.

2001 Publication of the second consultative document “The New
Basel Capital Accord”.

2004 Publication of “International Convergence of Capital Measure-
ment and Capital Standards – A Revisited Framework”. This
text establishes the Basel II framework.

8A complete list of supervisory authorities by countries are provided in page 32.
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2006 Implementation of Basel II.
2010 Publication of the Basel III framework. Its implementation is

scheduled from 2013 until 2019.

In 1998, BCBS introduces the Cooke ratio9, which is the minimum amount
of capital a bank should maintain in case of unexpected losses. Its goal is to:

• provide an adequation between the capital hold by the bank and the
risk taken by the bank;

• enhance the soundness and stability of the banking system;

• reduce the competitive inequalities between banks10.

It is measured as follows:

Cooke Ratio =
C

RWA

where C and RWA are the capital and the risk-weighted assets of the bank. A
risk-weighted asset is simply defined as a bank’s asset weighted by its risk score
or risk weight (RW). Because bank’s assets are mainly credits, the notional
is generally measure by the exposure at default (EAD). To compute risk-
weighted assets, we then use the following formula:

RWA = EAD×RW

The original Basel Accord only considers credit risk and classifies bank’s ex-
posures into four categories depending on the value of the risk weights (0%,
20%, 50% and 100%):

• cash, gold, claims on OECD governments and central banks, claims on
governments and central banks outside OECD and denominated in the
national currency are risk-weighted at 0%;

• claims on all banks with a residual maturity lower than one year, longer-
term claims on OECD incorporated banks, claims on public-sector en-
tities within the OECD are weighted at 20%;

• loans secured on residential property are risk-weighted at 50%;

• longer-term claims on banks incorporated outside the OECD, claims on
commercial companies owned by the public sector, claims on private-
sector commercial enterprises are weighted at 100%.

9This ratio took the name of Peter Cooke, who was the Chairman of the BCBS between
1977 and 1988.

10This was particular true between Japanese banks, which were weakly capitalized, and
banks in the US and Europe.
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For the other assets11, discretion is given to each national supervisory author-
ity to determine the appropriate weighting factors. Concerning off-balance-
sheet exposures, engagements are converted to credit risk equivalents by mul-
tiplying the nominal amounts by a credit conversion factor (CCF) and the
resulting amounts are risk-weighted according to the nature of the counter-
party. Concerning the numerator of the ratio, BCBS distinguishes tier 1 capital
and tier 2 capital. Tier 1 capital (or core capital) is composed of12:

• common stock (or paid-up share capital);

• disclosed reserves (or retained earnings).

whereas tier 2 capital represent supplementary capital such as13:

• undisclosed reserves;

• asset revaluation reserves;

• general loan-loss reserves (or general provisions);

• hybrid debt capital instruments

• subordinated debt.

The Cooke ratio required a minimum capital ratio of 8% when considering
both tier 1 and tier 2 capital, whereas tier 1 capital ratio should be at least
half of the total capital or 4%.

Example 1 The assets of a bank are composed of $100 mn of US treasury
bonds, $100 mn of Brazilian government bonds, $50 mn of residential mort-
gage, $300 mn of corporate loans and $20 mn of revolving credit loans. The
bank liability structure includes $25 mn of common stock and $13 mn of sub-
ordinated debt.

For each asset, we compute RWA by choosing the right risk weight factor.
We obtain the following results:

Asset EAD RW RWA
US treasury bonds 100 0% 0

Brazilian Gov. bonds 100 100% 100
Residential mortgage 50 50% 25

Corporate loans 300 100% 300
Revolving credit 20 100% 20

Total 445

11They are for example claims on governments and central banks outside OECD and
denominated in a foreign currency, claims on public-sector entities outside the OECD, etc.

12At least 50% of the tier 1 capital should come from the common equity.
13The comprehensive definitions and restrictions to define all the elements of capital are

defined in Appendix 1 in BCBS (1998).
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The risk-weighted assets of the bank are then equal to $445 mn. We deduce
that the capital adequacy ratio is:

Cooke Ratio =
38

445
= 8.54%

This bank meets the regulatory requirements, because the Cooke ratio is
higher than 8% and the tier 1 capital ratio14 is also higher than 4%. Sup-
pose now that the capital of the bank consists of $13 mn of common stock
and $25 mn of subordinated debt. In this case, the bank does not satisfy the
regulatory requirements, because the tier 2 capital can not exceed the tier 1
capital, meaning that the Cooke ratio is equal to 5.84% and the capital tier 1
ratio is equal to 2.92%.

The Basel Accord, which has been adopted by more than 100 countries,
has been implemented in the US by the end of 1992 and in Europe in 199315.
In 1996, the Basel Committee published a revision of the original Accord by
incorporating market risk. This means that banks have to calculate capital
charges for market risk in addition to the credit risk. The major difference
with the previous approach to measure credit risk is that banks have the
choice between two methods for applying capital charges for the market risk:

• The standardized measurement method (SMM)

• The internal model-based approach16 (IMA)

With the SMM, the bank apply a fixed capital charge for each asset. The
market risk requirement is therefore the sum of the capital charges for all
the assets that compose the bank’s portfolio. With IMA, the bank estimates
the market risk capital charge by computing the 99% value-at-risk of the
portfolio’s loss for a holding period of 10 trading days. From a statistical point
of view, the value-at-risk with confidence level α is defined as the quantile α
associated to the probability distribution of the portfolio loss. Its computation
is illustrated in Figure 1.4.

Another difference with credit risk is that the bank compute directly the
market risk capital requirement KMR with these two approaches17. Therefore,
the Cooke ratio becomes18:

CBank

RWA +12.5×KMR
≥ 8%

14The tier 1 capital ratio is equal to 25/445 = 5.26%.
15Under the European directive 93/6/EEC, which is better known as the capital adequacy

directive
16The use of the internal model method is subject to the approval of the national super-

visor.
17We use the symbols C and K in order to make the distinction between the capital of

the bank and the regulatory capital.
18When considering market risk, the total capital may include tier 3 capital, consisting

of short-term subordinated debt with an original maturity of at least 2 years.
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FIGURE 1.4: Probability distribution of the portfolio loss

We deduce that:
CBank ≥ 8%× RWA︸ ︷︷ ︸

KCR

+ KMR

meaning that 8%×RWA can be interpreted as the credit risk capital require-
ment KCR, which can be compared to the market risk capital charge KMR.

Example 2 We consider Example 1 and assume that the bank has a market
risk on an equity portfolio of $25 mn. The corresponding risk capital charge
for a long exposure on a diversified portfolio of stocks is equal to 12%. Using
its internal model, the bank estimates that the 99% quantile of the portfolio
loss is equal to $1.71 mn for a holding period of 10 days.

In the case of the standardized measurement method, the market risk
capital requirement is equal to $3 mn19 The capital ratio becomes:

Cooke Ratio =
25

445 + 12.5× 3
= 7.88%

19We have:
KMR = 12%× 25 = 3
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In this case, the bank does not meet the minimum capital requirement of 8%.
If the bank uses its internal model, the Cooke ratio is satisfied:

Cooke Ratio =
25

445 + 12.5× 1.71
= 8.15%

The Basel Accord has been highly criticized, because the capital charge for
credit risk is too simplistic and too little risk sensitive: limited differentiation
of credit risk, no maturity, granularity of risk weights, etc. These resulted
in regulatory arbitrage through the use of securitization between assets with
same regulatory risk but different economic risk. In June 1999, the Basel
Committee produced an initial consultative document with the objective to
replace the 1998 Accord by a new capital adequacy framework. This paper
introduces some features about Basel II, but this is really the publication of
the second consultative paper in January 2001 that marks a milestone for
the banking regulation. Indeed, the 2001 publication is highly detailed and
comprehensive, and the implementation of this new framework seemed very
complex at that time. The reaction of the banking industry was negative and
somehow hostile at the beginning, in particular because the Basel Committee
introduced a third capital charge for operational risk beside credit and market
risk and the implementation costs were very high. It has taken a long time
until the Basel Committee and the banking industry converge to an accord.
Lastly, the finalized Basel II framework is published in June 2004.

TABLE 1.4: The three pillars of the Basel II framework

Pillar 1 Pillar 2 Pillar 3

Minimum Capital Supervisory Review Market Discipline
Requirements Process

Credit risk Review & reporting Capital structure
Market risk Capital above Pillar 1 Capital adequacy
Operational risk Supervisory interven-

tion
Models & parameters

Risk management

The new Accord consists of three pillars:

1. the first pillar corresponds to minimum capital requirements, that is how
to compute the capital charge for credit risk, market risk and operational
risk;

2. the second pillar describes the supervisory review process; it explains
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the role of the supervisor and gives the guidelines to compute additional
capital charges for specific risks, which are not covered by the first pillar;

3. the market discipline establishes the third pillar and details the disclo-
sure of required information regarding the capital structure and the risk
exposures of the bank.

Regarding the first pillar, the Cooke ratio becomes:

CBank

RWA +12.5×KMR + 12.5×KOR
≥ 8%

where KOR is the capital charge for operational risk. This implies that the
required capital is directly computed for market risk and operational risk
whereas credit risk is indirectly measured by risk-weighted assets20.

Example 3 We assume that the risk-weighted assets for the credit risk are
equal to $500 mn, the capital charge for the market risk is equal to $10 mn
and the capital charge for the operational risk is equal to $3 mn.

We deduce that the required capital for the bank is:

K = 8%× (RWA +12.5×KMR + 12.5×KOR)

= 8%× RWA +KMR + KOR

= 8%× 500 + 10 + 3

= 53

This implies that credit risk represents 75.5% of the total risk.
With respect to the original Accord, the Basel Committee did not change

the market risk approach whereas it profoundly changed the methods to com-
pute the capital charge for the credit risk. Two approaches are proposed:

• The standardized approach (SA)
This approach, which is more sensitive than Basel I, is based on ex-
ternal ratings provided by credit rating agencies. The capital charge is
computed by considering a mapping function between risk weights and
ratings.

• The internal rating-based approach (IRB)
This approach can be viewed as an external risk model with internal and
external risk parameters. The key parameter is the default probability of
the asset, which is deduced from the internal credit rating model of the
bank. The Basel Committee makes the distinction between two methods.
In the foundation IRB (FIRB), the bank only estimates the probability

20In fact, we can define risk-weighted assets for each category of risk. We have the following
relationships RWAR = 12.5×KR and KR = 8%×RWAR where KR is the required capital
for the risk R. The choice of defining either RWAR or KR is a mere convention.
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of default and uses standard values for the other risk parameters of the
model. In the advanced IRB (AIRB), the bank may estimate all the risk
parameters.

Regarding operational risk, the Basel Committee propose three approaches to
compute the required capital:

• The Basic Indicator Approach (BIA)
In this case, the capital charge is a fixed percentage α of the gross income.

• The Standardized Approach (TSA)
This method consists of dividing bank’s activities into eight business
lines. For each business line, the capital charge is a fixed percentage β
of its gross income. The parameter β depends on the riskiness of the
business line. The total capital is the sum of the eight regulatory capital
charges.

• Advanced Measurement Approaches (AMA)
In this approach, the bank uses a statistical model with internal data
for estimating the total capital.

A summary of the different options is reported in Figure 1.5.

The European Union has adopted the Basel II framework in June 2006
with the capital requirements directive21 (CRD). In the United States, Basel
II is partially applied since 2006 and only concerns the largest banking in-
stitutions (Getter, 2014). Since the 2004 publication, more than 40 countries
have fully implemented Basel II (Hong Kong in January 2007, Japan in March
2007, Canada in November 2007, South Korea in December 2007, Australia in
January 2008, South Africa in January 2008, etc.). However, the subprime cri-
sis in 2007 and the collapse of Lehman Brothers in September 2008 illustrated
the limits of the new Accord concerning the issues of leverage and liquidity.
In response to the financial market crisis, the Basel Committee enhances then
the new Accord by issuing a set of documents between 2008 and 2009. In July
2009, the Basel Committee approved a package of measures to strengthen the
rules governing trading book capital, particularly the market risk associated to
securitization and credit-related products. Known as the Basel 2.5 framework,
these new rules can be summarized into four main elements, which are:

1. the incremental risk charge (IRC), which is an additional capital charge
to capture default risk and migration risk for unsecuritized credit prod-
ucts;

2. the stressed value-at-risk requirement (SVaR), which is intended to cap-
ture stressed market conditions;

21It replaces CAD II (or the 98/31/EEC directive), which is the revision of the original
CAD and incorporates market risk.
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FIGURE 1.5: Minimum capital requirements in the Basel II framework
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3. the comprehensive risk measure (CRM), which is an estimate of risk in
the credit correlation trading portfolio (CDS baskets, CDO products,
etc.);

4. new standardized charges on securitization exposures, which are not
covered by CRM.

In addition to these elements affecting the first pillar, the Basel Committee
also expand the second pillar (largest exposures and risk concentrations, re-
muneration policies, governance and risk management) and enhances the third
pillar (securitization and re-securitization exposures). The coming into force
of Basel 2.5 was December 2011 in the European Union22 and January 2013
in the United States (BCBS, 2015).

In December 2010, the Basel Committee published a new regulatory frame-
work in order to enhance risk management, increase the stability of the finan-
cial markets and improve the banking industry’s ability to absorb macro-
economic shocks. The Basel III framework consists of micro-prudential and
macro-prudential regulation measures concerning;

• a new definition of the risk-based capital;

• the introduction of a leverage ratio;

• the management of the liquidity.

The capital is redefined as follows. Tier 1 capital is composed of common
equity tier 1 (CET1) capital (common equity and retained earnings) and ad-
ditional tier 1 (AT1) capital. The new capital ratios are 4.5% for CET1, 6%
for tier 1 and 8% for total capital (T1 + T2). Therefore, Basel III gives prefer-
ence to tier 1 capital rather than tier 2 capital whereas the tier 3 risk capital
is eliminated. BCBS (2010) introduces also a surplus of CET1, which is “de-
signed to ensure that banks build up capital buffers outside periods of stress
which can be drawn down as losses are incurred”. This capital conservation
buffer (CB), which is equal to 2.5% of RWA, applies at all the times outside
periods of stress. The aim is to reduce the distribution of earnings and to
support the business of bank through periods of stress. A macro-prudential
approach completes capital requirements by adding a second capital buffer
called the countercyclical capital buffer (CCB). During periods of excessive
credit growth, national authorities may require an additional capital charge
between 0% and 2.5%, which increases the CET1 ratio until 9.5% (including
the conservation buffer). The underlying idea is to smooth the credit cycle,
to reduce the procyclicality and to help banks to provide credit during bad
periods of economic growth. The implementation of this new framework is pro-
gressive from April 2013 until March 2019. A summary of capital requirements
and transitional periods is given in Table 1.5.

22The Basel 2.5 framework was adopted in two stages: CRD II (or the 2009/111/EC
directive) in November 2009 and CRD III (or the 2010/76/EU directive) in December 2010.
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TABLE 1.5: Basel III capital requirements

Capital ratio 2013 2014 2015 2016 2017 2018 2019
CET1 3.5% 4.0% 4.5% 4.5%

CB 0.625% 1.25% 1.875% 2.5%

CET1 + CB 3.5% 4.0% 4.5% 5.125% 5.75% 6.375% 7.0%

Tier 1 4.5% 5.5% 6.0% 6.0%

Total 8.0% 8.0%

Total + CB 8.0% 8.625% 9.25% 9.875% 10.5%

CCB 0%− 2.5%

Source: Basel Committee on Banking Supervision (2015),
www.bis.org/bcbs/basel3.htm.

Remark 1 Basel III defines a third capital buffer for systemic banks, which
can vary between 1% and 5%. This topic will be presented later on the para-
graph dedicated to systemically important financial institutions on page 30.

Remark 2 This new definition of the capital is accompanied by a change of
the required capital for counterparty credit risk (CCR). In particular, BCBS
(2011) adds a credit valuation adjustment charge (CVA) for OTC derivative
trades. CVA is defined as the market risk of loss caused by changes in the
credit spread of a counterparty due to changes in its credit quality. It also
corresponds to the market value of counterparty credit risk.

Basel III also includes a leverage ratio to prevent the build-up of excessive
on- and off-balance sheet leverage in the banking sector. BCBS (2014a) defines
this ratio as follows:

Leverage ratio =
Tier 1 capital
Total exposures

≥ 3%

where the total exposures is the sum of on-balance sheet exposures, derivative
exposures and some adjustments concerning off-balance sheet items. The lever-
age ratio can be viewed as the second macro-prudential measure of Basel III.
Indeed, during credit boom, we generally observe compression of risk weight
assets and a growth of the leverage, because the number of profitable projects
increases during economic good times. For instance, Brei and Gambacorta
(2014) show that the Basel III leverage ratio is negatively correlated with
GDP or credit growth. By introducing a floor value, the Basel Committee
expects that the leverage ratio will help to reduce the procyclicality like the
countercyclical capital buffer.

The management of the liquidity is another important issue of Basel III.
The default of Lehman Brothers was followed by a lack of liquidity, which
is one of the main sources of systemic risk. For instance, Brunnermeier and
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Pedersen (2009) demonstrated that a liquidity dry-up event arising from a
fight-to-quality environment can result in runs, fire sales, and asset liquida-
tions in general transforming the market into a contagion mechanism. In order
to prevent such events, the Basel Committee proposed several liquidity rules
and introduced in particular two liquidity ratios:

• The liquidity coverage ratio (LCR)
The objective of the LCR is to promote short-term resilience of the
bank’s liquidity risk profile. It is expressed as:

LCR =
HQLA

Total net cash outflows
≥ 100%

where HQLA is the stock of high quality liquid assets and the denom-
inator is the total net cash outflows over the next 30 calendar days.
Therefore, the LCR is designed to ensure that the bank has the neces-
sary assets to face a one-month stressed period of outflows.

• The net stable funding ratio (NSFR)
NSFR is designed in order to promote long-term resilience of the bank’s
liquidity profile. It is defined as the amount of available stable funding
(ASF) relative to the amount of required stable funding (RFS):

NSFR =
Available amount of stable funding
Required amount of stable funding

≥ 100%

The amount of available stable funding is equal to the regulatory capi-
tal23 plus the other liabilities to which we apply a scaling factor between
0% and 100%. The amount of required stable funding is the sum of two
components: weighted assets and off-balance sheet exposures.

The implementation of Basel III was due to January 2013, but some
countries have delayed the adoption of the full package. According to BCBS
(2015c), the rules for risk-based capital are more adopted than those concern-
ing the liquidity ratio or the leverage ratio. In the US, the rules for risk-based
capital and the leverage ratio are effective since January 2014, while the LCR
rule came into effect in January 2015. In the European Union, the Basel III
agreement is transposed on July 2013 into two texts: the CRD IV (or the
2013/36/EU directive) and the capital requirements regulation (CRR) (or the
575/2013 EU regulation). Therefore, Basel III is effective since January 2014
for the rules of risk-based capital and leverage ratio and October 2015 for the
LCR rule.

Even before Basel III is fully implemented, the Basel Committee has pub-
lished a set of consultative documents, which may be viewed as the basis of
a future Basel IV. The guiding principle of these works is to simplify the dif-
ferent approaches to compute the regulatory capital and to reduce the risk of

23Excluding tier 2 instruments with residual maturity of less than one year.
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arbitrage between standardized and advanced methods. These new proposals
concern review of the market risk measurement (2013b, 2014h), revision to the
standardized approach for credit (2015) and operational risks (2014f), mini-
mum capital requirements for interest rate risk in the banking book (2015d)
and a modified framework for CVA risk (2015e). The changes are very signifi-
cant. For instance, they propose to replace the VaR measure by the expected
shortfall measure, give up external ratings or calculate a regulatory capital
for interest rate risk in the banking book.

1.2.2 Insurance regulation

Contrary to the banking industry, the regulation in insurance is national.
The International Association of Insurance Supervisors (IAIS) is an associa-
tion to promote globally consistent supervision. For that, the IAIS is respon-
sible for developing principles and standards, which form the Insurance Core
Principles (ICP). For instance, the last release of ICP was in October 2013 and
contained 26 ICPs24. However, its scope of intervention is more limited than
this of the BCBS. In particular, the IAIS does not produce any methodologies
of risk management or formula to compute risk-based capital. In Europe, the
regulatory framework is the Solvency II directive (or the 2009/138/EC direc-
tive), which harmonizes the insurance regulation and capital requirements in
the European Union. In the US, the supervisor is the National Association of
Insurance Commissioners (NAIC). In 2008, it has created a Solvency Modern-
ization Initiative (SMI) in order to reform the current framework in the spirit
of Solvency II. However, the convergence across the different jurisdictions is
far to being reached.

Solvency I (or the 2002/13/EC directive) is a set of rules to define the in-
surance solvency regime and was put in place on January 2004 in the European
Union. It defined how an insurance company should calculate its liabilities and
the required capital. In this framework, the capital is the difference between
the book value of assets and the technical provisions (or insurance liabilities).
This capital is decomposed in the solvency capital requirement (or SCR) and
the surplus (see Figure 1.6). One of the main drawback of Solvency I is that
assets and liabilities are evaluated using an accounting approach (historical or
amortized cost).

In an address to the European Insurance Forum 2013, Matthew Elderfield,
Deputy Governor of the Central Bank of Ireland, justifies the reform of the
insurance regulation in Europe as follows:

“[...] it is unacceptable that the common regulatory framework for
insurance in Europe in the 21st-century is not risk-based and only
takes account, very crudely, of one side of the balance sheet. The

24ICP 1 concerns the objectives, powers and responsibilities of the supervisor, ICP 17
is dedicated to capital adequacy, ICP 24 presents the macro-prudential surveillance and
insurance supervision, etc.
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FIGURE 1.6: Solvency I capital requirement

European Union urgently needs a new regulatory standard which
differentiates solvency charges based on the inherent risk of differ-
ent lines of business and which provides incentives for enhanced
risk management. It urgently needs a framework that takes ac-
count of asset risks in an insurance company. It urgently needs
a framework that encourages better governance and management
of risk. And it urgently needs a framework that provides better
disclosure to market participants” (Elderfield, 2013, page 1).

With Solvency II, capital requirements are then based on an economic valua-
tion of the insurer balance sheet, meaning that:

• assets are valued at their market value;

• liabilities are valued on a best estimate basis.

In this framework, the economic value of liabilities corresponds to the expected
present value of the future cash flows. Technical provisions are then the sum
of the liabilities best estimate and a risk margin (or prudence margin) in order
to take into account non-hedgeable risk components. Solvency II defines two
levels of capital requirements. The minimum capital requirement (MCR) is the
required capital under which risks are considered as being unacceptable. The
solvency capital requirement (SCR) is the targeted required capital (SCR ≥
MCR). The underlying idea is to cover the different source of risk at a 99.5%
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FIGURE 1.7: Solvency II capital requirement

confidence level25 for a holding period of one year. The insurance company
may opt for the standard formula or its own internal model for computing the
required capital. In the case of the standard formula method, the SCR of the
insurer is equal to:

SCR =

√√√√ m∑
i,j

ρi,j × SCRi×SCRj + SCROR

where SCRi is the SCR of the risk module i, SCROR is the SCR associated to
the operational risk and ρi,j is the correlation factor between risk modules i
and j. Solvency II considers several risk components: underwriting risk (non-
life, life, health, etc.), market risk, default and counterpart credit risk26. For
each risk component, a formula is provided to compute the SCR of the risk
factors27. Regarding the capital C, own funds are classified into basic own
funds and ancillary own funds. The basic own funds consist of the excess of
assets over liabilities, and subordinated liabilities. The ancillary own funds
corresponds to other items which can be called up to absorb losses. Examples
of ancillary own funds are unpaid share capital or letters of credit and guar-

25It is set to 85% for the MCR.
26Solvency II is an ambitious and complex framework because it mixes both assets and

liabilities, risk management and ALM.
27See Chapter 7 for the detailed calculations.
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antees. Own funds are then divided into tiers depending on their permanent
availability and subordination. For instance, tier 1 corresponds to basic own
funds which are immediately available and fully subordinated. The solvency
ratio is then defined as:

Solvency Ratio =
C

SCR

This solvency ratio must be larger than 33% for tier 1 and 100% for the total
own funds.

The quantitative approach to compute MCR, SCR and the technical pro-
visions define Pillar 1 (Figure 1.7). As in Basel II framework, it is completed
by two other pillars. Pillar 2 corresponds to the governance of the solvency
system and concerns qualitative requirements, rules for supervisors and own
risk and solvency assessment (ORSA). Pillars 3 includes market disclosures
and also supervisory reporting.

Remark 3 Solvency II is different than other national frameworks. However,
we can consider it as the most complete regulation in the insurance industry.
This is why we will focus on this approach in Chapter 7 and we will show
the differences with the NAIC risk-based capital (RBC) approach, which is
implemented in the US.

1.2.3 Market regulation

Banks and insurers are not the only financial institutions that are regu-
lated and the financial regulatory framework does not reduce to Basel III and
Solvency II. In fact, a whole variety of legislation measures helps to regulate
the financial market and the participants.

In Europe, the markets in financial instruments directive or MiFID28 came
in force since November 2007. Its goal was to establish a regulatory frame-
work for the provision of investment services in financial instruments (such
as brokerage, advice, dealing, portfolio management, underwriting, etc.) and
for the operation of regulated markets by market operators. The scope of
application concerns various aspects such as passporting, client categoriza-
tion (retail/professional investor), pre-trade and post-trade transparency or
best execution procedures. In August 2012, MiFID is completed by the Euro-
pean market infrastructure regulation (EMIR), which is specifically designed
to increase the stability of the OTC derivative markets by promoting central
counterparty clearing and trade repositories. In June 2014, MiFID is revised
(MiFID 2) and the regulation on markets in financial instruments (MiFIR)
replaces EMIR. According to ESMA29, this supervisory framework concerns
104 European regulated markets at the date of May 2015. On April 2014,

28It corresponds to the 2004/39/EC directive
29See the website mifiddatabase.esma.europa.eu.
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the European parliament completes the framework by publishing new rules to
protect retail investors (packaged retail and insurance-based investment prod-
ucts or PRIIPS). These rules complete the various UCITS directives, which
organize the distribution of mutual funds in Europe.

In the US, the regulation of the market dates back to the 1930s:

• The Securities Act of 1933 concerns the distribution of new securities.

• The Securities Exchange Act of 1934 regulates trading securities, bro-
kers, and exchanges, whereas the Commodity Exchange Act regulates
the trading of commodity futures.

• The Trust Indenture Act of 1939 defines the regulating rules for debt
securities.

• The Investment Company Act of 1940 is the initial regulation framework
of mutual funds.

• The Investment Advisers Act of 1940 is dedicated to investment advisers.

At the same time, the Securities and Exchange Commission (SEC) was cre-
ated to monitor financial markets (stocks and bonds). Now, the area of SEC
supervision is enlarged and concerns stock exchanges, brokers, mutual funds,
investment advisors, some hedge funds, etc. In 1974, the Commodities Fu-
ture Trading Commission Act established the Commodity Futures Trading
Commission (CFTC) as the supervisory agency responsible for regulating the
trading of futures contracts. The market regulation in the US has not changed
significantly until the 2008 financial crisis. In 2010, President Barack Obama
signed an ambitious federal law, the Dodd-Frank Wall Street Reform and Con-
sumer Protection Act also named more simply Dodd-Frank, which is viewed as
a response to the crisis. This text has an important impact on various areas of
regulation (banking, market, investors, asset managers, etc.). It also introduces
a new dimension in regulation. It concerns the coordination among regulators
with the creation of the Financial Stability Oversight Council (FSOC), whose
goal is to monitor the systemic risk.

1.2.4 Systemic risk

The 2008 financial crisis has an unprecedent impact on the financial reg-
ulation. It was responsible for Basel III, Dodd-Frank, Volcker rule, etc., but
it has also inspired new considerations on the systemic risk. Indeed, the cre-
ation of the Financial Stability Board (FSB) in April 2009 was motivated to
establish an international body that monitors and makes recommendations
about the global financial system, and especially the associated systemic risk.
Its area of intervention covers not only banking and insurance, but also all
the other financial institutions including asset managers, finance companies,
market intermediaries, investors, etc.
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The main task of FSB is to develop assessment methodologies for defin-
ing systemically important financial institutions (SIFIs) and to make policy
recommendations for mitigating the systemic risk of the financial system. Ac-
cording to FSB (2010), SIFIs are institutions whose “distress or disorderly fail-
ure, because of their size, complexity and systemic interconnectedness, would
cause significant disruption to the wider financial system and economic activ-
ity”. By monitoring SIFIs in a different way than other financial institutions,
the objective of the supervisory authorities is obviously to address the ‘too
big too fail’ problem. A SIFI can be global (G-SIFI) or domestic (D-SIFI).
FSB also distinguishes between three types of G-SIFIs:

1. G-SIBs correspond to global systemically important banks.

2. G-SIIs designate global systemically important insurers.

3. The third category is defined with respect to the two previous ones. It
incorporates other SIFIs than banks and insurers (non-bank non-insurer
global systemically important financial institutions or NBNI G-SIFIs).

The FSB-BCBS framework for identifying G-SIBs is a scoring system
based on five categories: size, interconnectedness, substitutability/financial in-
stitution infrastructure, complexity and cross-jurisdictional activity (BCBS,
2014g). In November 2015, there is 30 G-SIBs (FSB, 2015b). Depending on
the score value, the bank is then assigned to a specific bucket, which is used
to calculate the higher loss absorbency (HLA) requirement. This additional
capital requirement is part of the Basel III framework and ranges from 1% to
3.5% common equity tier 1. According to FSB (2015b), the two most systemi-
cally important banks are HSBC and JPMorgan Chase, which are assigned to
an additional capital buffer of 2.5% CET1. This means that the total capital
for these two banks can go up to 15.5% with the following decomposition: tier
1 = 6.0%, tier 2 = 2.0%, conservation buffer = 2.5%, countercyclical buffer =
2.5% and systemic risk capital = 2.5%.

For insurers, the assessment methodology is close to the methodology for
G-SIBs and is based on five categories: size, global activity, interconnected-
ness, non-traditional insurance and non-insurance activities and substitutabil-
ity (IAIS, 2013). However, this quantitative approach is completed by a quali-
tative analysis and the final list of G-SIIs is the result of the IAIS supervisory
judgment. In November 2015, there are 9 G-SIIs (FSB, 2015c). The asso-
ciated policy measures are documented in IAIS (2014) and consist of three
main axes: recovery and resolution planning requirements, enhanced supervi-
sion and higher loss absorbency requirements.

Concerning NBNI SIFIs, FSB and IOSCO are still in a consultation process
in order to finalize the assessment methodologies (FSB, 2015a). Indeed, the
second consultation paper considers three categories of participants in the
financial sectors that it identifies as potential NBNI SIFIs:

1. finance companies;
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2. market intermediaries, especially securities broker-dealers;

3. investment funds, asset managers and hedge funds.

The final assessment methodology is planned for the end of 2015. However,
the fact that FSB already considers that there are other SIFIs than banks
and insurers suggests that financial regulation will be strengthened for many
financial institutions including the three previous categories but also other
financial institutions such as pension funds, sovereign wealth funds, etc.

The identification of SIFIs is not the only task of FSB. The other impor-
tant objective is to monitor the shadow banking system and to understand
how it can pose systemic risk. The shadow banking system can be described
as “credit intermediation involving entities and activities outside the regular
banking system” (FSB, 2011). It is also called non-bank credit intermediation.
The shadow banking system may expose the traditional banking system to sys-
temic risk, because they may be spill-over effects between the two systems.
Moreover, shadow banking entities (SBE) are not subject to tight regulation
like banks. However, it runs bank-like activities such as maturity transforma-
tion, liquidity transformation, leverage and credit risk transfer. Examples of
shadow banking are for instance money market funds, securitization, securi-
ties lending, repos, etc. The task force formed by FSB follows a three-step
process:

• the first step is to scan and map the overall shadow banking system and
to understand its risks;

• the second step is to identify the aspects of the shadow banking system
posing systemic risk or regulatory arbitrage concerns;

• the last step is to assess the potential impact of systemic risk induced
by the shadow banking system.

Even if this process is ongoing, shadow banking regulation can be found in
Dodd-Frank or 2015 consultation paper of EBA. However, until now regulation
is principally focused on money market funds.

1.3 Appendix

1.3.1 List of supervisory authorities

We use the following correspondence: B for banking supervision, I for
insurance supervision, M for market supervision and S for systemic risk su-
pervision.
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International authorities
BCBS Basel Committee on Banking Supervision; www.bis.org/bcbs; B
FSB Financial Stability Board; www.financialstabilityboard.org;

S
IAIS International Association of Insurance Supervisors; iaisweb.org;

I
IOSCO International Organization of Securities Commissions; www.iosco.

org; M

European authorities
EBA European Banking Authority; www.eba.europa.eu; B
ECB/SSM European Central Bank/Single Supervisory Mechanism; www.

bankingsupervision.europa.eu; B
EIOPA European Insurance and Occupational Pensions Authority; eiopa.

europa.eu; I
ESMA European Securities and Markets Authority; www.esma.europa.

eu; M
ESRB European Systemic Risk Board; www.esrb.europa.eu; S

US authorities
CFTC Commodity Futures Trading Commission; www.cftc.gov; M
FRB Federal Reserve Board; www.federalreserve.gov/bankinforeg;

B/S
FDIC Federal Deposit Insurance Corporation; www.fdic.gov; B
FIO Federal Insurance Office; www.treasury.gov/initiatives/fio; I
FSOC Financial Stability Oversight Council; www.treasury.gov/

initiatives/fsoc; S
OCC Office of the Comptroller of the Currency; www.occ.gov; B
SEC Securities and Exchange Commission; www.sec.gov; M

Some national authorities

Canada

CSA Canadian Securities Administrators; www.securities-administrators.
ca; M

OSFI Office of the Superintendent of Financial Institutions; www.osfi-
bsif.gc.ca; B/I

IIROC Investment Industry Regulatory Organization of Canada; www.
iiroc.ca; M

China

CBRC China Banking Regulatory Commission; www.cbrc.gov.cn; B
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France

AMF Autorité des Marchés Financiers; www.amf-france.org; M
ACPR Autorité de Contrôle Prudentiel et de Résolution; acpr.banque-

france.fr; B/I

Germany

BAFIN Bundesanstalt für Finanzdienstleistungsaufsicht; www.bafin.de;
B/I/M

Italy

BdI Banca d’Italia; www.bancaditalia.it; B
CONSOB Commissione Nazionale per le Società e la Borsa; www.consob.it;

M
IVASS Istituto per la Vigilanza sulle Assicurazioni; www.ivass.it; I

Japan

FSA Financial Services Agency; www.fsa.go.jp; B/I/M

Luxembourg

CAA Commissariat aux Assurances; www.commassu.lu; I
CSSF Commission de Surveillance du Secteur Financier; www.cssf.lu;

B/M

Spain

BdE Banco de España; www.bde.es; B
CNMV Comisión Nacional del Mercado de Valores; www.cnmv.es; M
DGS Dirección General de Seguros y Pensiones; www.dgsfp.mineco.es;

I

Switzerland

FINMA Swiss Financial Market Supervisory Authority; www.finma.ch;
B/I/M

United Kingdom

FCA Financial Conduct Authority; www.fca.org.uk; M
PRA Prudential Regulation Authority; www.bankofengland.co.uk/

pra; B/I
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1.3.2 Timeline of financial regulation

Before 1980

Before 1980, the financial regulation is mainly developed in the US with
several acts, which are voted after the Great Depression in the 1930s. These
acts concerns a wide range of financial activities, in particular banking, mar-
kets and investment sectors. The Basel Committee on Banking Supervision
was established in 1974. In Europe, two directives established a regulatory
framework for insurance companies.

Banking
Regulation

1913 Federal Reserve Act (establishment of the Fed-
eral Reserve System as the central banking
system of the US)

1933 Glass-Steagall Act (separation of commercial
and investment banking in the US)

1933 US Banking Act (creation of FDIC and federal
insurance deposit

BCBS 1974 Creation of the Basel Committee on Banking
Supervision

Solvency I

1973-07-24 Publication of the non-life insurance directive
(73/239/EEC) dedicated to solvency margin
requirements

1979-03-05 Publication of the life insurance directive
(79/267/EEC) dedicated to solvency margin
requirements

Market
Regulation

1933-05-27 Securities Act (registration and prospectus of
securities)

1934-06-06 Securities Exchange Act (regulation of the sec-
ondary markets and creation of the SEC)

1936-06-15 Commodity Exchange Act (regulation of the
commodity futures)

1939-08-03 Trust Indenture Act (regulation of debt secu-
rities)

1940-08-22 Investment Advisers Act (regulation of invest-
ment advisers)

1940-08-22 Investment Company Act (regulation of mu-
tual funds)

1974-10-23 Commodity Future Trading Commission Act
(the CFTC replaces the Commodity Exchange
Commission)
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The years 1980 - 2000

The years 1980-2000 were marked by the development of the banking reg-
ulation and the publication of the Basel Accord. In particular, the end of the
1990s saw the implementation of the regulatory framework concerning market
risks. In Europe, the UCITS Directive is also an important step concerning
the investment industry. In the US, the insurance regulation is reformed with
the risk-based capital framework whereas Solvency I is reinforced in Europe.

Basel I

1987-12-15 Publication of the consultative paper on the
Cooke ratio

1988-07-04 Publication of the Basel Capital Accord
1996-01-18 Publication of the amendment to incorporate

market risks

CAD

1993-03-15 Publication of the Capital Adequacy Directive
(93/6/EEC) known as CAD I

1998-06-22 Revision of the CAD (98/31/EEC) known as
CAD II

Solvency I

1988-06-22 Second non-life insurance directive
88/357/EEC

1990-11-08 Second life insurance directive 90/619/EEC
1992-06-18 Third non-life insurance directive 92/49/EEC
1992-11-10 Third life insurance directive 92/96/EEC

RBC

1990 NAIC created the US RBC regime
1992 Implementation of RBC in US insurance
1993 Finalization of the RBC formula for life insur-

ance
1994 Finalization of the RBC formula for property

and casuality insurance
1998 Finalization of the RBC formula for health in-

surance

Market
Regulation

1985-12-20 Publication of the first UCITS Directive
(85/611/EEC)

2000-12-14 Commodity Futures Modernization Act (reg-
ulation of OTC derivatives in the US)

The years 2000 - 2008

Over the last decade, banks and regulators have invested significant ef-
fort and resources to put in place the Basel II framework. This is during this
period that modern risk management was significantly developed in the bank-
ing sector. The Solvency II reform emerged in 2004 and intensive work was
underway to calibrate this new proposition on insurance regulation.
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Basel II

1999-06-02 Publication of the first CP on Basel II
2001-01-29 Publication of the second CP on Basel II
2001-11-05 Results of the QIS 2
2002-06-25 Results of the QIS 2.5
2003-04-29 Publication of the third CP on Basel II
2003-05-05 Results of the QIS 3
2004-06-10 Publication of the Basel II Accord
2004–2005 Conduct of QIS 4 (national impact study and

tests)
2005-07-30 Publication of “The Application of Basel II to

Trading Activities and the Treatment of Dou-
ble Default Effects”

2006-06-16 Results of the QIS 5
2006-06-30 Publication of the Basel II Comprehensive

Version (including Basel I, Basel II and 2005
revisions)

CRD
2006-05-14 Publication of the directive 2006/48/EC
2006-05-14 Publication of the directive 2006/49/EC

(CRD)

Solvency I
2002-03-05 Non-life insurance directive 2002/13/EC (re-

vision of solvency margin requirements)
2002-11-05 Life insurance recast directive 2002/83/EC

Solvency II

2004 Initial works on Solvency II
2006-03-17 Report on the first QIS
2007 Report on the second QIS
2007-11-01 Report on the third QIS

Market
Regulation

2002-01-22 Publication of the directives 2001/107/EC
and 2001/108/EC (UCITS III)

2004-04-21 Publication of the directive 2004/39/EC (Mi-
FID 1)

The years 2008 - 2015

The financial crisis of 2007-2008 completely changed the landscape of fi-
nancial regulation. Under political pressures, we assist to a frenetic race of
regulatory reforms. For instance, the Basel Committee had published 37 reg-
ulatory standards before 2007. From January 2008 to June 2015, this number
has dramatically increased with 76 new regulatory standards30. With Basel
2.5, new capital requirements are put in place for market risk. The Basel III
framework is published at the end of 2010 and introduces new standards for
managing the liquidity risk. Revisions of the Basel II Accord is already planned

30The list of these publications can be obtained on the BCBS website http://www.bis.
org/bcbs/publications.htm by selecting the publication type ‘Standards’.
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(change of the standardized approach for market, credit and operational risks,
review of the internal model-based approach for market risk, etc.). In Europe,
market regulation is the new hot topic for regulators. However, the major
event of the beginning of this decade concerns systemic risk. New regulations
have emerged and new financial activities are under scrutiny (shadow banking
system, market infrastructures, investment management).

Basel 2.5

2007-10-12 Publication of the first CP on the incremental
risk charge

2008-07-22 Proposed revisions to the Basel II market risk
framework

2009-07-13 Publication of the final version of Basel 2.5
2012-05-03 Publication of the CP on the fundamental re-

view of the trading book
2013-12-13 Capital requirements for banks’ equity invest-

ments in funds
2014-04-10 Capital requirements for bank exposures to

central counterparties

Basel III

2010-12-16 Publication of the original version of Basel III
2010-12-16 Results of the comprehensive QIS
2011-06-01 Revised version of the Basel III capital rules

reflecting the CVA modification
2013-01-07 Publication of the rules concerning the liquid-

ity capital ratio
2014-10-31 Publication of the rules concerning net stable

funding ratio

CRD

2009-09-16 Publication of the directive 2009/111/EC
(CRD II)

2010-09-24 Publication of the directive 2010/76/EU
(CRD III)

2013-06-26 Publication of the directive 2013/36/EU
(CRD IV)

2013-06-26 Publication of the capital requirements regu-
lation 575/2013 (CRR)

Solvency II
2008-11 Report on the fourth QIS
2009-11-25 Solvency II directive 2009/138/EC
2011-03-14 Report on the fifth QIS

Market
Regulation

2009-07-13 Publication of the directive 2009/65/EC
(UCITS IV)

2010-06-08 Publication of the AIFM directive
(2011/61/EU)

2012-07-04 Publication of the EU regulation 648/2012
(EMIR)

2014-05-15 Publication of the directive 2014/65/EU (Mi-
FID II)

Continued on next page
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Market
Regulation

2012-05-15 Publication of the EU regulation 600/2014
(MiFIR)

2014-07-23 Publication of the directive 2014/91/EU
(UCITS V)

2014-11-26 Publication of the EU regulation 1286/2014
(PRIIPS)

Systemic
Risk

2009-04 Creation of the Financial Stability Board
(FSB)

2010-07-21 Dodd-Frank Wall Street Reform and Con-
sumer Protection Act

2010-07-21 Volcker Rule (§619 of the Dodd-Frank Act)
2011-11-04 Publication of the G-SIB assessment method-

ology (BCBS)
2013-07-03 Update of the G-SIB assessment methodology

(BCBS)
2014-11-06 Update of list of G-SIBs (FSB-BCBS)
2014-11-06 Update of list of G-SIIs (FSB-IAIS)
2015-03-04 Second CP on assessment methodologies for

identifying NBNI-SIFIs (FSB-IOSCO)

We could also mention the following consultations, which will serve to define
the future Basel IV Accord.

Basel IV

2013-10-31 Fundamental review of the trading book
(FRTB)

2014-10-06 Revisions to the simpler approaches for oper-
ational risk

2014-12-22 Capital floors: the design of a framework based
on standardized approaches

2014-12-22 Revisions to the standardized approach for
credit risk

2015-06-08 Interest rate risk in the banking book (IR-
RBB)

2015-07-01 Review of the credit valuation adjustment risk
framework





Part I

Risk Management in the
Banking Sector





Chapter 2
Market Risk

This chapter begins with the presentation of the regulatory framework. It will
help us to understand how the supervision on market risk is organized and
the capital charge is computed. We will then study the different statistical
approaches to measure the value-at-risk. Specifically, a section is dedicated to
the risk management of derivatives and exotic products. We will see the main
concepts, but we will present the more technical details later in Chapter 12
dedicated to model risk. Advanced topics like Monte Carlo methods and stress
testing models will also be addressed in Part III. Finally, the last part of the
chapter is dedicated to risk allocation.

2.1 Regulatory framework
We remind that the original Basel Accord only concerned credit risk in

1988. However, the occurrences of shocks were more important and the rapid
development of derivatives created some stress events at the end of the eighties
and the beginning of the nineties. In October 19, 1987, stock markets crashed
and the Dow Jones Industrial Average Index dropped by more than 20% in the
day. In 1990, the collapse of the Japanese asset price bubble (both in stock
and real estate markets) caused a lot of damage in the Japanese banking
system and economy. The unexpected rise of US interest rates in 1994 results
in a bond market massacre and difficulties for banks, hedge funds and money
managers. In 1994-1995, several financial disasters occurred, in particular the
bankruptcy of Barings and the Orange County affair (Jorion, 2007).

In April 1993, the Basel Committee published a first consultative paper
to incorporate market risk in the Cooke ratio. Two years later, in April 1995,
it accepted the idea to compute the capital charge for market risks with an
internal model. This decision is mainly due to the publication of RiskMetrics
by J.P. Morgan in October 1994. Finally, the Basel Committee published
the amendment to the capital accord to incorporate market risks in January
1996. This proposal does not change a lot since its publication and remains
the current supervisory framework for market risk. However, a new approach
is currently proposed and discussed to fix the future Basel IV Accord (BCBS,
2013b).
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According to BCBS (1996a), market risk is defined as “the risk of losses in
on and off-balance sheet positions arising from movements in market prices.
The risk subject to this requirements are:

• the risks pertaining to interest rate related instruments and equities in
the trading book;

• foreign exchange risk and commodities risk throughout the bank.”

The following table summarizes the perimeter of markets risks that require
regulatory capital:

Portfolio Fixed Income Equity Currency Commodity
Trading X X X X
Banking X X

The Basel Committee make the distinction between the trading book and the
banking book. The trading book refers to positions in assets held with trading
intent or for hedging other elements of the trading book. These assets are
valuated on a mark-to-market basis, are actively managed and their holding is
intentionally for short-term resale. Examples are proprietary trading, market
making, hedging portfolios of derivatives products, etc. The banking book
refers to positions in assets that are expected to be held until the maturity.
These assets may be valuated at their historic cost.

The first task of the bank is therefore to define trading book assets and
banking book assets. For instance, if the bank sells an option on the Libor rate
to a client, a capital charge for the market risk is required. If the bank provides
a personal loan to a client with a fixed interest rate, there is a market risk if
the interest rate risk is not hedged. However, a capital charge is not required
in this case, because the exposure concern the banking book. Exposures on
stocks may be included in the banking book if the objective is a long-term
investment, even if it is a minority shareholding.

To compute the capital charge, banks have the choice between two ap-
proaches:

1. The standardized measurement method (SMM)

2. The internal model-based approach (IMA).

Five main risk categories are identified: interest rate risk, equity risk, currency
risk, commodity risk and price risk on options and derivatives. For each cat-
egory, a capital charge is computed to cover the general market risk, but also
the specific risk. According to the Basel Committee, specific risk includes the
risk “that an individual debt or equity security moves by more or less than
the general market in day-to-day trading and event risk (e.g. takeover risk
or default risk)”. The use of internal models is subject to the approval of the
supervisor and the bank can mix the two approaches under some conditions.
For instance, the bank may use SMM for the specific risk and IMA for the
general market risk.



Market Risk 45

2.1.1 Standardized measurement method

In this approach, the capital charge K is equal to the risk exposure E
times the capital charge weight K:

K = E ×K

For the specific risk, the risk exposure corresponds to the notional of the
instrument, whether it is a long or a short position. For the general market
risk, long and short positions in different instruments can be offset.

2.1.1.1 Interest rate risk

Let us first consider the specific risk. BCBS make the distinction between
sovereign and other fixed-income instruments. In the case of government in-
struments, the capital charge weights are:

AAA A+ BB+ Below
B−Rating to to to NR

AA− BBB− B−
Maturity 0−6M 6M−2Y 2Y+

K 0% 0.25% 1.00% 1.60% 8% 12% 8%

This capital charge depend on the rating and also the residual maturity for
A+ to BBB− issuers1. The category NR stands for non-rated issuers. In the
case of other instruments issued by public sector entities, banks and corporate
companies, the capital charge weights are:

AAA BB+ Below
BB−Rating to to NR

BBB− BB−
Maturity 0−6M 6M−2Y 2Y+

K 0.25% 1.00% 1.60% 8% 12% 8%

We notice that the two scales are close with the following differences. There
is no 0% weight, meaning that the weights 0.25%/1.00%/1.60% apply to in-
vestment grade (IG) instruments (from AAA to BBB−). The 8% category is
more restrictive and only concerns BB+ to BB− instruments.

Example 4 We consider a trading portfolio with the following exposures: a
long position of $50 mn on Euro-Bund futures, a short position of $100 mn
on three-month T-Bills and a long position of $10 mn on an investment grade
corporate bond with a three-year residual maturity.

The underlying asset of Euro-Bund futures is a German bond with a long
maturity (higher than 6 years). We deduce that the capital charge for specific

1Three maturity are defined: 6 months or less, greater than 6 months and up to 24
months, more than 24 months.
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risk for the two sovereign exposures is equal to zero, because both Germany
and US are rated above A+. Concerning the corporate bond, we obtain:

K = 10× 1.60% = $160 000

For the general market risk, the bank has the choice between two methods:
the maturity approach and the duration approach. In the maturity approach,
long and short positions are slotted into a maturity-based ladder comprising
fifteen time-bands. The time bands are defined by disjoint intervals ]M−,M+].
The risk weights depend on the time band t and the value of the coupon2:

K (t) 0.00% 0.20% 0.40% 0.70% 1.25% 1.75% 2.25% 2.75%
M+

BC 1M 3M 6M 1Y 2Y 3Y 4Y 5Y
M+

SC 1M 3M 6M 1Y 1.9Y 2.8Y 3.6Y 4.3Y
K (t) 3.25% 3.75% 4.50% 5.25% 6.00% 8.00% 12.50%
M+

BC 7Y 10Y 15Y 20Y +∞
M+

SC 5.7Y 7.3Y 9.3Y 10.6Y 12Y 20Y +∞

These risk weights apply to the net exposure on each time band. For reflecting
basis and gap risks, the bank must also include a 10% capital charge to the
smallest exposure of the matched positions. This adjustment is called the
‘vertical disallowance’. The Basel Committee considers a second adjustment
for horizontal offsetting (the ‘horizontal disallowance’). For that, it defines 3
zones (less than 1 year, one year to four years and more than four years).
The offsetting can be done within and between the zones. The adjustment
coefficients are 30% within the zones 2 and 3, 40% within the zone 1, between
the zones 1 and 2, and between the zones 2 and 3, and 100% between the
zones 1 and 3.

To compute mathematically the required capital, we note L? (t) and S? (t)
the long and short nominal positions for the time band t. t = 1 corresponds
to the first time band [0, 1M], t = 2 corresponds to the second time band
]1M, 3M[, etc. The risk weighted positions for the time band t are defined as
L (t) = K (t)× L? (t) and S (t) = K (t)× S? (t). The required capital for the
overall net open position is then equal to:

KOP =

∣∣∣∣∣
15∑
t=1

L (t)−
15∑
t=1

S (t)

∣∣∣∣∣
The matched positionM (t) for the time band t is equal to min (L (t) ,S (t)).
We deduce that the additional capital for the vertical disallowance is:

KVD = 10%×
13∑
t=1

M (t)

2Coupons 3% or more are called big coupons (or BC) and coupons less than 3% are
called small coupons (SC).
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N (t) = L (t) − S (t) is the net exposure for the time band t. We then define
the net long and net short exposures for the three zones as follows:

Li =
∑
t∈∆i

max (N (t) , 0)

Si = −
∑
t∈∆i

min (N (t) , 0)

where ∆1 = [0, 1Y], ∆2 = ]1Y, 4Y] and ∆3 = ]4Y,+∞]. We define CF i,j as
the exposure of the zone i that can be carried forward to the zone j. We then
compute the additional capital for the horizontal disallowance:

KHD = 40%×min (L1,S1) + 30%×min (L2,S2) + 30%×min (L3,S3) +

40%× CF1,2 + 40%× CF2,3 + 100%× CF1,3

The regulatory capital for the general market risk is the sum of the three
components:

K = KOP + KVD + KHD

Example 5 We consider a trading portfolio with the following exposures: a
long position of $100 mn on four-month instruments, a short position of $50
mn on five-month instruments, a long position of $10 mn on fifteen-year in-
struments and a short position of $50 mn on twelve-year instruments.

Let us assume that the instruments correspond to bonds with coupons
larger than 3%. For each time band, we report the long, short, matched and
net exposures:

Time band L? (t) S? (t) K (t) L (t) S (t) M (t) N (t)

3M-6M 100 50 0.40% 0.40 0.20 0.20 0.20
7Y-10Y 10 50 3.75% 0.45 2.25 0.45 −1.80

The capital charge for the overall open position is:

KOP = |0.40 + 0.45− 0.20− 2.25|
= 1.6

whereas the capital for the vertical disallowance is:

KVD = 10%× (0.20 + 0.45)

= 0.065

We now compute the net long and net short exposures for the three zones:

zone 1 2 3
Li 0.20 0.00 0.00
Si 0.00 0.00 1.80



48 Lecture Notes on Risk Management & Financial Regulation

It follows that there is no horizontal offsetting within the zones. Moreover,
we notice that we can only carry forward the long exposure L1 to the zone 3
meaning that:

KHD = 40%× 0.00 + 30%× 0.00 + 30%× 0.00 +

40%× 0.00 + 40%× 0.00 + 100%× 0.20

= 0.20

We finally deduce that the required capital is:

K = 1.6 + 0.065 + 0.20

= $1.865 mn

With the duration approach, the bank computes the price sensitivity of
each position with respect to a change in yield ∆y , slot the sensitivities into
a duration-based ladder and applies adjustments for vertical and horizontal
disallowances. The computation is then exactly the same as previously3, but
with the following time bands:

∆y 1.00% 1.00% 1.00% 1.00% 0.90% 0.80% 0.75% 0.75%
M+ 1M 3M 6M 1Y 1.9Y 2.8Y 3.6Y 4.3Y
Zone 1 1 1 1 2 2 2 3
∆y 0.70% 0.65% 0.60% 0.60% 0.60% 0.60% 0.60%
M+ 5.7Y 7.3Y 9.3Y 10.6Y 12Y 20Y +∞
Zone 3 3 3 3 3 3 3

2.1.1.2 Equity risk

For equity exposures, the capital charge for specific risk is 4% if the port-
folio is liquid and well-diversified and 8% otherwise. For the general market
risk, the risk weight is equal to 8% and applies to the net exposure.

Remark 4 In CRD I, stock-index futures which are exchange traded and well-
diversified have no capital requirement against specific risk.

Example 6 We consider a short exposure on S&P 500 index futures ($100
mn) and a long exposure on the Apple stock ($60 mn).

The capital charge for specific risk is4:

KSpecific = 100× 4% + 60× 8%

= 4 + 4.8

= 8.8

3For the vertical disallowance, the capital charge to capture basis risk is equal to 5% and
not 10% as in the case of the maturity approach.

4We assume that the S&P 500 index is liquid and well-diversified, whereas the exposure
on the Apple stock is not diversified.
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The net exposure is −$40 mn. We deduce that the capital charge for the
general market risk is:

KGeneral = |−40| × 8%

= 3.2

It follows that the total capital charge for this equity portfolio is $12 mn.

Remark 5 Under Basel 2.5, the capital charge for specific risk is set to 8%
whatever the liquidity of the portfolio.

2.1.1.3 Foreign exchange risk

The Basel Committee includes gold in this category and not in the com-
modity category because of its specificity in terms of volatility and its status
of safe-heaven currency. The bank has first to calculate the net position (long
or short) of each currency. The capital charge is then 8% of the global net
position defined as the sum of:

• the maximum between the aggregated value LFX of long positions and
the aggregated value SFX of short positions and,

• the absolute value of the net position NGold in gold.

We have:
K = 8%× (max (LFX,SFX) + |NGold|)

Example 7 We consider a bank which has the following long and short posi-
tions expressed in $ mn5:

Currency EUR JPY GBP CHF CAD AUD ZAR Gold
Li 170 0 25 37 11 3 8 33
Si 80 50 12 9 28 0 8 6

We first compute the net exposure Ni for each currency:

Ni = Li − Si

We obtain the following figures:

Currency EUR JPY GBP CHF CAD AUD ZAR Gold
Ni 90 −50 13 28 −17 3 0 27

We then calculate the aggregated long and short positions:

LFX = 90 + 13 + 28 + 3 + 0 = 134

SFX = 50 + 17 = 67

NGold = 27

5We implicity assume that the reporting currency of the bank is the US dollar.
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We finally deduce that the capital charge is equal to $12.88 mn:

K = 8%× (max (134, 67) + |27|)
= 8%× 161

= 12.88

2.1.1.4 Commodity risk

Commodity risk concerns both physical and derivative positions (forward,
futures6 and options). This includes energy products (oil, gas, ethanol, etc.),
agricultural products (grains, oilseeds, fiber, livestock, etc.) and metals (indus-
trial and precious), but excludes gold which is covered under foreign exchange
risk. The Basel Committee makes the distinction between the risk of spot or
physical trading, which is mainly affected by the directional risk and the risk
of derivative trading, which includes the directional risk, the basis risk, the
cost of carry and the forward gap (or time spread) risk. The SMM for com-
modity risk includes two options: the simplified approach and the maturity
ladder approach.

Under the simplified approach, the capital charge for directional risk is 15%
of the absolute value of the net position in each commodity. For the other three
risks, the capital charge is equal to 3% of the global gross position. We have:

K = 15%×
m∑
i=1

|Li − Si|+ 3%

m∑
i=1

(Li + Si)

where m is the number of commodities, Li is the long position in commodity
i and Si is the short position in commodity i.

Example 8 We consider a portfolio of five commodities. The mark-to-market
exposures expressed in $ mn are the following:

Commodity Crude Oil Coffee Natural Gas Cotton Sugar
Li 23 5 3 8 11
Si 0 0 19 2 6

The aggregated net exposure
∑5
i=1 |Li − Si| is equal to $55 mn whereas

the gross exposure
∑5
i=1 (Li + Si) is equal to $77 mn. We deduce that the

required capital is 15%× 55 + 3%× 77 or $10.56 mn.
Under the maturity ladder approach, the bank should spread long and

short exposures of each currency to seven time bands: 0-1M, 1M-3M, 3M-
6M, 6M-1Y, 1Y-2Y, 2Y-3Y, 3Y+. For each time band, the capital charge for
the basis risk is equal to 1.5% of the matched positions (long and short).

6The most traded futures contract are crude oil, brent, heating oil, gas oil, natural oil,
rbob gasoline silver, platinum, palladium, zinc, lead, aluminium, cocoa, soybeans, corn,
cotton, wheat, sugar, live cattle, coffee and soybean oil.
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Nevertheless, the residual net position of previous time bands may be carried
forward to offset exposures in next time bands. In this case, a surcharge of
0.6% of the residual net position is added at each time band to cover the
time spread risk. Finally, a capital charge of 15% is applied to the global net
exposure (or the residual unmatched position) for directional risk.

To compute mathematically the required capital, we note Li (t) and Si (t)
the long and short positions of the commodity i for the time band t. t = 1
corresponds to the first time band [0, 1M] and t = 7 corresponds to the
last time band ]3Y,+∞[. The cumulative long and short exposures are
L+
i (t) = L+

i (t− 1) + Li (t) with L+
i (0) = 0 and S+

i (t) = S+
i (t− 1) +

Si (t) with S+
i (0) = 0. The cumulative matched position is M+

i (t) =
min

(
L+
i (t) ,S+

i (t)
)
. We deduce that the matched exposition for the time

band t is equal toMi (t) =M+
i (t)−M+

i (t− 1) withM+
i (0) = 0. The value

of the carried forward CF i (t) can be obtained recursively by reporting the un-
matched positions at time t which can be offset in the times bands τ with τ > t.
The residual unmatched position is Ni = max

(
L+
i (7) ,S+

i (7)
)
−M+

i (t). We
finally deduce that the required capital is the sum of the individual capital
charges:

Ki = 1.5%×

(
7∑
t=1

2×Mi (t)

)
+ 0.6%×

(
6∑
t=1

CF i (t)

)
+ 15%×Ni

We notice that the matched position Mi (t) is multiplied by 2, because we
apply the capital charge 1.5% to the long and short matched positions.

Example 9 We consider the following positions (in $):

Time band 0−1M 1M−3M 3M−6M 6M−1Y 1Y−2Y 2Y−3Y 3Y+

Li (t) 500 0 0 1 800 300 0 0
Si (t) 300 900 0 100 600 100 200

We compute the cumulative positions L+
i (t) and S+

i (t) and deduce the
matched expositionsMi (t):

Time band t Li (t) Si (t) L+
i (t) S+

i (t) Mi (t) CF i (t)
0−1M 1 500 300 500 300 300 200
1M−3M 2 0 900 500 1 200 200 700
3M−6M 3 0 0 500 1 200 0 700
6M−1Y 4 1 800 100 2 300 1 300 800 600
1Y−2Y 5 300 600 2 600 1 900 600 300
2Y−3Y 6 0 100 2 600 2 000 100 200
3Y+ 7 0 200 2 600 2 200 200 0

The sum of matched positions is equal to 2 200. This means that the residual
unmatched position is 400 (2 600 − 2 200). At time band t = 1, we can carry
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forward 200 of long position in the next time band. At time band t = 2, we
can carry forward 700 of short position in the times band t = 4. This implies
that CF i (3) = 700 and CF i (4) = 700. At time band t = 4, the residual
unmatched position is equal to 1 000 (1 800 − 100 − 700). However, we can
only carry 600 of this long position in the next time bands (300 for t = 5, 100
for t = 6 and 200 for t = 1). At the end, we verify that the residual position is
400, that is the part of the long position at time band t = 4 which can not be
carried forward (1 000− 600). We also deduce that the sum of carried forward
positions is 2 700. It follows that the required capital is7:

Ki = 1.5%× 4 400 + 0.6%× 2 700 + 15%× 400

= $142.20

2.1.1.5 Option’s market risk

There are three approaches for the treatment of options and derivatives.
The first method, called the simplified approach, consists of calculating sep-
arately the capital charge of the position for the option and the associated
underlying. In the case of an hedged exposure (long cash and long put, short
cash and long call), the required capital is the standard capital charge of the
cash exposure less the amount of the in-the-money option. In the case of a
non-hedged exposure, the required capital is the minimum value between the
mark-to-market of the option and the standard capital charge for the under-
lying.

Example 10 We consider a variant of Example 6. We have a short exposure
on S&P 500 index futures ($100 mn) and a long exposure on the Apple stock
($60 mn). We assume that the current stock price of Apple is $120. Six months
ago, we have bought 400 000 put options on Apple with a strike of $130 and a
one-year maturity. We also decide to buy 10 000 ATM call options on Google.
The current stock price of Google is $540 and the market value of the option
is $45.5.

We deduce that we have 500 000 shares of the Apple stock. This implies
that $48 mn of the long exposure on Apple is hedged by the put options. Con-
cerning the derivative exposure on Google, the market value is equal to $0.455
mn. We can therefore decompose this portfolio into three main exposures:

• a directional exposure composed by the $100 mn short exposure on the
S&P 500 index and the $12 mn remaining long exposure on the Apple
stock;

• a $48 mn hedged exposure on the Apple stock;

• a $0.455 mn derivative exposure on the Google stock.

7The total matched position is equal to 2× 2 200 = 4 400 (long + short).
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For the directional exposure, we compute the capital charge for specific and
general market risks8:

K = (100× 4% + 12× 8%) + 88× 8%

= 4.96 + 7.04

= 12

For the hedged exposure, we proceed as previously but we deduce the in-the-
money value9:

K = 48× (8% + 8%)− 4

= 3.68

The market value of the Google options is $0.455 mn. We compare this value
to the standard capital charge10 to determine the capital charge:

K = min (5.4× 16%, 0.455)

= 0.455

We finally deduce that the required capital is $16.135 mn.
The second approach is the delta-plus method. In this case, the directional

exposure of the option is calculated by its delta. Banks will also required to
compute an additional capital charge for gamma and vega risks. We consider
different options and we note j ∈ Ai when the option j is written on the asset
i. We first compute the (signed) capital charge for the 4 risks at the asset
level:

KSpecific
i =

∑
j∈Ai

Nj ×∆j

× Si ×KSpecific
i

KGeneral
i =

∑
j∈Ai

Nj ×∆j

× Si ×KGeneral
i

KGamma
i =

1

2
×

∑
j∈Ai

Nj × Γj

× (Si ×KGamma
i

)2
KVega
i =

∑
j∈Ai

Nj × υj × (25%× Σj)

where Si is the current market value of the asset i, KSpecific
i and KGeneral

i are
the corresponding standard capital charge for specific and general market risk

8The net short exposure is equal to $88 mn.
9It is equal to 400 000×max (0, 130− 120).

10It is equal to 10 000× 540× (8% + 8%).
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and KGamma
i is the capital charge for gamma impact11. Here, Nj , ∆j , Γj and

υj are the exposure, delta, gamma and vega of the option j. For the vega risk,
the shift corresponds to ±25% of the implied volatility Σj . For a portfolio of
assets, the traditional netting rules apply to specific and general market risks.
The total capital charge for gamma risk corresponds to the opposite of the
sum of the negative individual capital charges for gamma risk whereas the
total capital charge for vega risk corresponds to the sum of the absolute value
of individual capital charges for vega risk.

Example 11 We consider a portfolio of 4 options written on stocks with the
following characteristics:

Option Stock Exposure Type Price Strike Maturity Volatility
1 A −5 call 100 110 1.00 20%
2 A −10 call 100 100 2.00 20%
3 B 10 call 200 210 1.00 30%
4 B 8 put 200 190 1.25 35%

This means that we have 2 assets. For stock A, we have a short exposure of 5
call options with a one-year maturity and a short exposure of 10 call options
with a two-year maturity. For stock B, we have a long exposure of 10 call
options with a one-year maturity and a long exposure of 8 put options with a
maturity of one year and three months.

Using the Black-Scholes model, we first compute the Greek coefficients for
each option j. Because the options are written on single stocks, the capital
chargesKSpecific

i ,KGeneral
i andKGamma

i are all equal to 8%. Using the previous
formulas, we then deduce the individual capital charges for each option12:

j 1 2 3 4
∆j 0.45 0.69 0.56 −0.31
Γj 0.02 0.01 0.01 0.00
υj 39.58 49.91 78.85 79.25

KSpecific
j −17.99 −55.18 89.79 −40.11

KGeneral
j −17.99 −55.18 89.79 −40.11

KGamma
j −3.17 −3.99 8.41 4.64

KVega
j −9.89 −24.96 59.14 55.48

We can now aggregate the previous individual capital charges for each stock.
We obtain:

11It is equal to 8% for equities, 8% for currencies and 15% for commodities. In the case
of interest rate risk, it corresponds to the standard value K (t) for the time band t (see the
table in page 46).

12For instance, the individual capital charge of the second option for the gamma risk is

KGamma
j =

1

2
× (−10)× 0.0125× (100× 8%)2 = −3.99
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Stock KSpecific
i KGeneral

i KGamma
i KVega

i

A −73.16 −73.16 −7.16 −34.85
B 49.69 49.69 13.05 114.61

Total 122.85 23.47 7.16 149.46

To compute the total capital charge, we apply the netting rule for the gen-
eral market risk, but not for the specific risk. This means that KSpecific =
|−73.16| + |49.69| = 122.85 and KGeneral = |−73.16 + 49.69| = 23.47. For
gamma risk, we only consider negative impacts and we have KGeneral =
|−7.16| = 7.16. For vega risk, there is no netting rule: KVega = |−34.85| +
|114.61| = 149.46. We finally deduce that the overall capital is 302.94.

The third method is the scenario approach. In this case, we evaluate the
profit and loss (P&L) for simultaneous changes in the underlying price and in
the option implied volatility. For defining these scenarios, the ranges are the
standard shifts used previously. For instance, we use the following ranges for
equities:

Si
−8% +8%

Σj
−25%
+25%

The scenario matrix corresponds to intermediate points on the 2× 2 grid. For
each cell of the scenario matrix, we calculate the P&L of the option exposure13.
The capital charge is then the largest loss.

2.1.1.6 Securitization instruments

The treatment of specific risk of securitization positions is revised in Basel
2.5 and is based on external ratings. For instance, the capital charge for secu-
ritization exposures is 1.6% if the instrument is rated from AAA to AA−. For
resecuritization exposures, it is equal to 3.2%. If the rating of the instrument
is from BB+ to BB−, the risk capital charges becomes respectively 28% and
52%14.

Remark 6 In the case of securitization exposures below BB−, the bank does
not calculate a risk charge, but applies a deduction from capital.

2.1.2 Internal model-based approach

The use of an internal model is conditional upon the approval of the super-
visory authority. In particular, the bank must meet certain criteria concerning
different topics. These criteria concerns the risk management system, the spec-
ification of market risk factors, the properties of the internal model, the stress

13It may include the cash exposure if the option is used for hedging purposes.
14See pages 4-7 of BCBS (2009b) for the other risk capital charges.
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testing framework, the treatment of the specific risk and the backtesting pro-
cedure. In particular, the Basel Committee considers that the bank must have
“sufficient numbers of staff skilled in the use of sophisticated models not only
in the trading area but also in the risk control, audit, and if necessary, back
office areas”. We notice that BCBS first insists on the quality of the trading
department, meaning that the trader is the first level of risk management.
The validation of an internal model does not therefore only concern the risk
management department, but the bank as a whole.

2.1.2.1 Qualitative criteria

BCBS (1996a) defines the following qualitative criteria:

• “The bank should have an independent risk control unit that is respon-
sible for the design and implementation of the bank’s risk management
system. [...] This unit must be independent from business trading units
and should report directly to senior management of the bank”.

• The risk management department produces and analyze daily reports,
is responsible for the backtesting procedure and conducts stress testing
analysis.

• The internal model must be used to manage the risk of the bank in the
daily basis. It must be completed by trading limits expressed in risk
exposure.

• The bank must document internal policies, controls and procedures con-
cerning the risk measurement system (including the internal model).

It is today evident that the risk department department should not report
to the trading and sales department. Twenty years ago, it was not the case.
Most of risk management units were incorporated to business units. It has
completely changed because of the regulation and risk management is now
independent from the front office. The risk management function has really
emerged with the amendment to incorporate market risks and even more with
the Basel II reform, whereas the finance function has long been developed in
banks. For instance, it’s very recent that the head of risk management15 is
also a member of the executive committee of the bank whereas the head of
the finance department16 has always been part of the top management.

From the supervisory point of view, an internal model does not reduce to
measure the risk. It must be integrated in the management of the risk. This
is why the Basel Committee stresses the importance between the outputs of
the model (or the risk measure), the organization of the risk management and
the impact on the business.

15He is called the chief risk officer or CRO.
16He is called the chief financial officer or CFO.
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2.1.2.2 Quantitative criteria

The choice of the internal model is left to the bank, but it must respect
the following quantitative criteria:

• The value-at-risk (VaR) is computed on a daily basis with a 99% confi-
dence level. The minimum holding period of the VaR is 10 trading days.
If the bank computes a VaR with a shorter holding period, it can use
the square root rule.

• The risk measure can take into account diversification, that is the cor-
relations between the risk categories.

• The model must capture the relevant risk factors and the bank must
pay attention to the specification of the appropriate set of market risk
factors.

• The sample period for calculating the value-at-risk is at least one year
and the bank must update the data set frequently (every month at least).

• In the case of options, the model must capture the non-linear effects
with respect to the risk factors and the vega risk.

• “Each bank must meet, on a daily basis, a capital requirement expressed
as the higher of (i) its previous day’s value-at-risk number [...] and (ii)
an average of the daily value-at-risk measures on each of the preceding
sixty business days, multiplied by a multiplication factor”.

• The value of the multiplication factor depends on the quality of the
internal model with a range between 3 and 4. The quality of the internal
model is related to its ex-post performance measured by the backtesting
procedure.

The holding period to define the capital is 10 trading days. However, it
is difficult to compute the value-at-risk for such holding period. In practice,
the bank computes the one-day value-at-risk and converts this number into a
ten-day value-at-risk using the square-root-of-time rule:

VaRα (w; 10D) =
√

10×VaRα (w; 1D)

This rule comes from the scaling property of the volatility associated to a
geometric Brownian motion. It has the advantage to be simple and objective,
but it generally underestimates the risk when the loss distribution exhibits fat
tails17.

The required capital at time t is equal to:

Kt = max

(
VaRt−1, (3 + ξ)× 1

60

60∑
i=1

VaRt−i

)
(2.1)

17See for instance Diebold et al. (1998), Daníelsson and Zigrand (2006) or Wang et al.
(2011).
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FIGURE 2.1: Calculation of the required capital with the VaR

where VaRt is the value-at-risk calculated at time t and ξ is the penalty
coefficient (0 ≤ ξ ≤ 1). In normal periods where VaRt−1 ' VaRt−i, the
required capital is the average of the last 60 value-at-risk values times the
multiplication factor18 mc = 3 + ξ. In this case, we have:

Kt = Kt−1 +
mc

60
(VaRt−1−VaRt−61)

The impact of VaRt−1 is limited because the factor (3 + ξ) /60 is smaller than
6.7%. The required capital can only be equal to the previous day’s value-at-
risk if the bank faces a stress VaRt−1 � VaRt−i. We also notice that a shock
on the VaR vanishes after 60 trading days. To understand the calculation
of the capital, we report an illustration in Figure 2.1. The solid blue line
corresponds to the value-at-risk VaRt whereas the dashed red line corresponds
to the capital Kt. We assume that ξ = 0 meaning that the complementary
factor is equal to 3. When t < 120, the value-at-risk varies around a constant.
The capital is then relatively smooth and is three times the average VaR.
At time t = 120, we observe a shock on the value-at-risk, which lasts 20
days. Immediately, the capital increases until t ≤ 140. Indeed, at this time,
the capital takes into account the full period of the shocked VaR (between
t = 120 and t = 139). The full effect of this stressed period continues until

18The complementary factor will be explained later in page 92.
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t ≤ 180, but this effect becomes partial when t > 180. The impact of the
shock vanishes when t = 200. We then observe a period of 100 days where
the capital is smooth because the daily value-at-risk does not change a lot. A
second shock on the value-at-risk occurs at time t = 300, but the magnitude
of the shock is larger than previously. During 10 days, the required capital
is exactly equal to the previous day’s value-at-risk. After 10 days, the bank
succeeds to reduce the risk of its portfolio. However, the daily value-at-risk
increases from t = 310 to t = 500. As previously, the impact of the second
shock vanishes 60 days after the end of shock. However, the capital increases
strongly at the end of the period. This is due to the effect of the multiplication
factor mc on the value-at-risk.

2.1.2.3 Stress testing

Stress testing is a simulation method to identify events that could have
a great impact on the soundness of the bank. The framework consists of ap-
plying stress scenarios and low-probability events on the trading portfolio of
the bank and to evaluate the maximum loss. Contrary to the value-at-risk19,
stress testing is not used to compute the required capital. The underlying idea
is more to identify the adverse scenarios for the bank, to evaluate the corre-
sponding losses, to eventually reduce the too risky exposures and to anticipate
the management of such stress periods.

Stress tests should incorporate both market and liquidity risks. The Basel
Committee considers two types of stress tests:

1. supervisory stress scenarios;

2. stress scenarios developed by the bank itself.

The supervisory stress scenarios are standardized and apply to the different
banks. This allows the supervisor to compare the vulnerability between the
different banks. The bank must complement them by its own scenarios in order
to evaluate the vulnerability of its portfolio according to the characteristics of
the portfolio. In particular, the bank may be exposed to some political risks,
regional risks or market risks that are not taken into account by standardized
scenarios. The banks must report their test results to the supervisors in a
quarterly basis.

Stress scenarios may be historical or hypothetical. In the case of historical
scenarios, the bank computes the worst-case loss associated to different typical
crisis: the Black Monday (1987), the European monetary system crisis (1992),
the bond market sell-off (1994), the internee bubble (2000), the subprime
mortgage crisis (2007), the liquidity crisis due to Lehman Brothers collapse
(2008), etc. Hypothetical scenarios are more difficult to calibrate, because they

19The 99% VaR is considered as a risk measure in normal markets and therefore ignore
stress events.
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must correspond to extreme but also plausible events. Moreover, the multi-
dimension aspect of stress scenarios is an issue. Indeed, the stress scenario is
defined by the extreme event, but the corresponding loss is evaluated with
respect to the shocks on market risk factors. For instance, if we consider
a severe middle east crisis, this event will have a direct impact on the oil
price, but also indirect impacts on other market risk factors (equity prices, US
dollar, interest rates). Whereas historical scenarios are objective, hypothetical
scenarios are by construction subjective and their calibration will differ from
one financial institution to another. In the case of the middle east crisis, one
bank may consider that the oil price could fall by 30% whereas another bank
may use a price reduction of 50%.

In 2009, the Basel Committee revised the market risk framework. In par-
ticular, it introduces the stressed value-at-risk measure. The stressed VaR has
the same characteristics than the traditional VaR (99% confidence level and
10-day holing period), but the model inputs are “calibrated to historical data
from a continuous 12-month period of significant financial stress relevant to
the bank’s portfolio”. For instance, a typical period is the 2008 year which both
combines the subprime mortgage crisis and the Lehman Brothers bankruptcy.
This implies that the historical period to compute the SVaR is completely
different than the historical period to compute the VaR (see Figure 2.2). In
Basel 2.5, the capital requirement for stressed VaR is:

KSVaR
t = max

(
SVaRt−1,ms ×

1

60

60∑
i=1

SVaRt−i

)

where SVaRt is the stressed VaR measure computed at time t. Like the coeffi-
cient mc, the complementary factor ms for the stressed VaR is also calibrated
with respect to the backtesting outcomes, meaning that we have ms = mc in
many cases.

2007 2008 2009 2013 2014 2015

SVaR VaR

Current date

FIGURE 2.2: Two different periods to compute the VaR and the SVaR

2.1.2.4 Specific risk and other risk charges

In the case where the internal model does not take into account the specific
risk, the bank must compute a specific risk charge (SRC) using the standard-
ized measurement method. To be validated as a value-at-risk measure with
specific risks, the model must satisfy at least the following criteria: it captures
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concentrations (magnitude and changes in composition), it captures name-
related basis and event risks and it considers the assessment of the liquidity
risk. For instance, an internal model built with a general market risk factor20
does not capture specific risk. Indeed, the risk exposure of the portfolio is
entirely determined by the beta of the portfolio with respect to the market
risk factor. This implies that two portfolios with the same beta but with a
different composition, concentration or liquidity have the same value-at-risk.

Basel 2.5 established a new capital requirement “ in response to the increas-
ing amount of exposure in banks’ trading books to credit-risk related and often
illiquid products whose risk is not reflected in value-at-risk” (BCBS, 2009b).
The incremental risk charge (IRC) measures the impact of rating migrations
and defaults, corresponds to a 99.9% value-at-risk for a one-year horizon time
and concerns portfolios of credit vanilla trading (bonds and CDS). The IRC
may be incorporated into the internal model or it may be treated as a sur-
charge from a separate calculation. Also under Basel 2.5, BCBS introduced
the comprehensive risk measure (CRM), which corresponds to a supplemen-
tary capital charge for credit exotic trading portfolios21. The CRM is also a
99.9% value-at-risk for a one-year time horizon. For IRC and CRM, the capital
charge is the maximum between the most recent risk measure and the average
of the risk measure over 12 weeks22. We finally obtain the following formula
to compute the capital charge for the market risk under Basel 2.5:

Kt = KVaR
t + KSVaR

t + KSRC
t + KIRC

t + KCRM
t

where KVaR
t is given by Equation (2.1) and KSRC

t is the specific risk charge.
In this formula, KSRC

t and/or KIRC
t may be equal to zero if the modeling of

these two risks is included in the value-at-risk internal model.

2.1.2.5 Backtesting and the ex-post evaluation of the internal
model

The backtesting procedure is described in the document Supervisory
Framework for the Use of Backtesting in Conjunction with the Internal Mod-
els Approach to Market Risk Capital Requirements published by the Basel
Committee in January 1996. It consists of verifying that the internal model
is consistent with a 99% confidence level. The idea is then to compare the
outcomes of the risk model with realized loss values. For instance, we expect
that the realized loss exceeds the VaR number once every 100 observations on
average.

The backtesting is based on the one-day holding period and compares
the previous day’s value-at-risk with the daily realized profit and loss. An
exception occurs if the loss exceeds the value-at-risk. For a given period, we

20This is the case of the capital asset pricing model (CAPM) developed by Sharpe (1964).
21This concerns correlation trading activities on credit derivatives.
22Contrary to the VaR and SVaR measures, the risk measure is not scaled by a comple-

mentary factor for IRC and CRM.
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compute the number of exceptions. Depending of the frequency of exceptions,
the supervisor determines the value of the penalty function between 0 and
1. In the case of a sample based on 250 trading days, the Basel Committee
defines three zones and proposes the values given in Table 2.1. The green
zone corresponds to a number of exceptions less or equal to 4. In this case,
BCBS considers that there is no problem and the penalty coefficient ξ is set
to 0. If the number of exceptions belongs to the yellow zone (between 5 and
9 exceptions), it may indicate that the confidence level of the internal model
could be lower than 99% and implies that ξ is greater than zero. For instance,
if the number of exceptions for the last 250 trading days is 6, BCBS proposes
that the penalty coefficient is set to 0.50, meaning that the multiplication
coefficient mc is equal to 3.50. The red zone is a concern. In this case, the
supervisor must investigate the reasons of such large number of exceptions.
If the problem comes from the relevancy of the model, the supervisor can
invalidate the internal model-based approach.

TABLE 2.1: Value of the penalty coefficient ξ for a sample of 250 observations

Zone Number of
ξexceptions

Green

0 0.00
1 0.00
2 0.00
3 0.00
4 0.00

Yellow

5 0.40
6 0.50
7 0.65
8 0.75
9 0.85

Red 10+ 1.00

The definition of the color zones comes from the statistical analysis of the
exception frequency. Let Lt and VaRt be respectively the daily loss and the
value-at-risk at time t. By definition, Lt is the opposite of the P&L Πt:

Lt = −Πt

= MtMt−1−MtMt

where MtMt is the mark-to-market of the trading portfolio at time t. By
definition, we have:

Pr {Lt ≥ VaRt−1} = 1− α

where α is the confidence level of the value-at-risk. Let et be the random
variable which is equal to 1 if there is an exception and 0 otherwise. et is a
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Bernoulli random variable with parameter p:

p = Pr {et = 1}
= Pr {Lt ≥ VaRt−1}
= 1− α

In the case of the Basel framework, α is set to 99% meaning that we have a
probability of 1% to observe an exception every trading day. For a given period
[t1, t2] of n trading days, the probability to observe exactly m exceptions is
given by the binomial formula:

Pr {Ne (t1; t2) = m} =

(
n

m

)
(1− α)

m
αn−m

where Ne (t1; t2) =
∑t2
t=t1

et is the number of exceptions for the period [t1, t2].
We obtain this result under the assumption that the exceptions are indepen-
dent across time. Ne (t1; t2) is then the binomial random variable B (n; 1− α).
We deduce that the probability to have up to m exceptions is:

Pr {Ne (t1; t2) ≤ m} =

m∑
i=0

(
n

i

)
(1− α)

i
αn−i

The three previous zones are then defined with respect to the statistical confi-
dence level of the assumption H : α = 99%. The green zone corresponds to the
95% confidence level: Pr {Ne (t1; t2) ≤ m} < 95%. In this case, the hypothesis
H : α = 99% is not rejected at the 95% confidence level. The yellow and red
zones are respectively defined by 95% ≤ Pr {Ne (t1; t2) ≤ m} < 99.99% and
Pr {Ne (t1; t2) ≤ m} ≥ 99.99%. This implies that the hypothesis H : α = 99%
is rejected at the 99.99% confidence level if the number of exceptions belongs
to the red zone.

If we apply the previous statistical analysis when n is equal to 250 trading
days, we obtain the results given in Table 2.2. For instance, the probability to
have zero exception is 8.106%, the probability to have one exception is 2.469%,
etc. We retrieve the three color zones determined by the Basel Committee. The
green zone corresponds to the interval [0, 4], the yellow zone is defined by the
interval [5, 9] and the red zone involves the interval [10, 250]. We notice that
the color zones can vary significantly if the confidence level of the value-at-
risk is not equal to 99%. For instance, if it is equal to 98%, the green zone
corresponds to less than 9 exceptions. In Figure 2.3, we have reported the
color zones with respect to the size n of the sample.

Exercise 12 Calculate the color zones when n is equal to 1000 trading days
and α = 99%.

We have Pr {Ne ≤ 14} = 91.759% and Pr {Ne ≤ 15} = 95.213%. This im-
plies that the green zones ends at 14 exceptions whereas the yellow zone be-
gins at 15 exceptions. Because Pr {Ne ≤ 23} = 99.989% and Pr {Ne ≤ 24} =
99.996%, we also deduce that the red zone begins at 24 exceptions.
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TABLE 2.2: Probability distribution (in %) of the number of exceptions (n =
250 trading days)

α = 99% α = 98%
m Pr {Ne = m} Pr {Ne ≤ m} Pr {Ne = m} Pr {Ne ≤ m}
0 8.106 8.106 0.640 0.640
1 20.469 28.575 3.268 3.908
2 25.742 54.317 8.303 12.211
3 21.495 75.812 14.008 26.219
4 13.407 89.219 17.653 43.872
5 6.663 95.882 17.725 61.597
6 2.748 98.630 14.771 76.367
7 0.968 99.597 10.507 86.875
8 0.297 99.894 6.514 93.388
9 0.081 99.975 3.574 96.963
10 0.020 99.995 1.758 98.720

FIGURE 2.3: Color zones of the backtesting procedure (α = 99%)
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Remark 7 The statistical approach of backtesting ignores the effects of intra-
day trading. Indeed, we make the assumption that the portfolio remains un-
changed from t − 1 to t, which is not the case in practice. This is why the
Basel Committee proposes to compute the loss in two different ways. The first
approach uses the official realized P&L, whereas the second approach consists
in separating the P&L of the previous’s day portfolio and the P&L due to the
intra-day trading activities.

2.2 Value-at-risk method
The value-at-risk VaRα (w;h) is defined as the potential loss which the

portfolio w can suffer for a given confidence level α and a fixed holding period
h. Three parameters are necessary to compute this risk measure:

• the holding period h, which indicates the time period to calculate the
loss;

• the confidence level α, which gives the probability that the loss is lower
than the value-at-risk;

• the portfolio w, which gives the allocation in terms of risky assets and
is related to the risk factors.

Without the first two parameters, it is not possible to interpret the amount
of the value-at-risk, which is expressed in monetary units. For instance, a
portfolio with a VaR of $100 mn may be regarded as highly risky if the VaR
corresponds to a 90% confidence level and a one-day holding period, but it
may be a low risk investment if the confidence level is 99.9% and the holding
period is one year.

We note Pt (w) the mark-to-market value of the portfolio w at time t. The
profit and loss between t and t+ h is equal to:

Π (w) = Pt+h (w)− Pt (w)

We define the loss of the portfolio as the opposite of the P&L: L (w) = −Π (w).
At time t, the loss is not known and is therefore random. From a statistical
point of view, the value-at-risk VaRα (w;h) is the quantile23 of the loss for
the probability α:

Pr {L (w) ≤ VaRα (w;h)} = α

23If the distribution of the loss is not continuous, the statistical definition of the quantile
function is:

VaRα (w;h) = inf {x : Pr {L (w) ≤ x} ≥ α}
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This means that the probability that the random loss is lower than the VaR
is exactly equal to the confidence level. We finally obtain:

VaRα (w;h) = F−1
L (α)

where FL is the distribution function of the loss24.
We notice that the previous analysis assumes that the portfolio remains

unchanged between t and t+h. In practice, it is not the case because of trading
and rebalancing activities. The holding period h depends then on the nature of
the portfolio. The Basel Committee has set h to one trading day for performing
the backtesting procedure in order to minimize rebalancing impacts. However,
h is equal to 10 trading days for capital requirements. It is the period which is
considered necessary to ensure the rebalancing of the portfolio if it is too risky
or if it costs too much regulatory capital. The confidence level α is equal to
99% meaning that there is an exception every 100 trading days. It is obvious
that it does not correspond to an extreme risk measure. From the point of
view of regulators, the 99% value-at-risk gives then a measure of the market
risk in the case of normal conditions.

To calculate the VaR, we first have to identify the risk factors that affect
the future value of the portfolio. Their number can be larger or smaller de-
pending on the market, but also on the portfolio. For instance, in the case of
an equity portfolio, we can use the one-factor model (CAPM), a multi-factor
model (industry risk factors, Fama-French risk factors, etc. ) or we can have
a risk factors for each individual stock. For interest-rate products, the Basel
Committee imposes that the bank use at least six factors to model the yield
curve risk. This contrasts with currency and commodity portfolios where one
must take into account one risk factor by exchange rate and by currency. Let
(F1, . . . ,Fm) be the vector of risk factors. We assume that there is a function
g such that:

Pt (w) = g (F1,t, . . . ,Fm,t;w)

g is called the pricing function. We deduce that the expression of the random
loss is:

L (w) = Pt (w)− g (F1,t+h, . . . ,Fm,t+h;w)

= ` (F1,t+h, . . . ,Fm,t+h;w)

where ` is the loss function. The big issue is then to model the future values of
risk factors. In practice, the distribution FL is not known because the multi-
dimensional distribution of the risk factors is not known. This is why we have
to estimate FL meaning that the calculated VaR is also an estimate:

V̂aRα (w;h) = F̂−1
L (α) = −F̂−1

Π (1− α)

24In a similar way, we have Pr {Π (w) ≥ −VaRα (w;h)} = α and VaRα (w;h) =
−F−1

Π (1− α) where FΠ is the distribution function of the P&L.
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In practice, there are three approaches to calculate V̂aRα (w;h) depending on
the method used to estimate F̂L:

1. the historical value-at-risk, which is also called the empirical or non-
parametric VaR;

2. the analytical (or parametric) value-at-risk;

3. the Monte Carlo (or simulated) value-at-risk.

Remark 8 In this book, we use the statistical expression VaRα (w;h) in place
of V̂aRα (w;h) in order to reduce the amount of notation.

2.2.1 Historical value-at-risk

The historical VaR corresponds to a non-parametric estimate of the value-
at-risk. For that, we consider the empirical distribution of the risk factors
observed in the past. Let (F1,s, . . . ,Fm,s) be the vector of risk factors observed
at time s < t. If we calculate the future P&L with this historical scenario, we
obtain:

Πs (w) = g (F1,s, . . . ,Fm,s;w)− Pt (x)

If we consider nS historical scenarios (s = 1, . . . , nS), the empirical distribu-
tion F̂Π is described by the following probability distribution:

Π (w) Π1 (w) Π2 (w) · · · ΠnS (w)

ps 1/nS 1/nS 1/nS

because each probability of occurrence is the same for all the historical scenar-
ios. To calculate the empirical quantile F̂−1

L (α), we can use two approaches:
the order statistics approach and the kernel density approach.

2.2.1.1 The order statistics approach

Theorem 1 (Lehmann, 1999) Let X1, . . . , Xn be a sample from a contin-
uous distribution F. Suppose that for a given scalar α ∈ ]0, 1[, there exist a
sequence {an} such that

√
n (an − nα)→ 0. Then, we have:

√
n
(
X(an:n) − F−1 (α)

)
→ N

(
0,

α (1− α)

f2 (F−1 (α))

)
(2.2)

This result implies that we can estimate the quantile F−1 (α) by the
mean of the nαth order statistic. Let us apply the previous result to our
problem. We calculate the order statistics associated to the P&L sample
{Π1 (w) , . . . ,ΠnS (w)}:

min
s

Πs (w) = Π(1:nS) ≤ Π(2:nS) ≤ · · · ≤ Π(nS−1:nS) ≤ Π(nS :nS) = max
s

Πs (w)
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The value-at-risk for a confidence level α is then equal to the opposite of the
nS (1− α)

th order statistic of the P&L:

VaRα (w;h) = −Π(nS(1−α):nS) (2.3)

If nS (1− α) is not an integer, we consider an interpolation scheme:

VaRα (x;h) = −
(
Π(q:nS) + (nS (1− α)− q)

(
Π(q+1:nS) −Π(q:nS)

))
where q = [nS (1− α)] is the integer part of nS (1− α). For instance, if nS =
100, the 99% value-at-risk corresponds to the largest loss. In the case where
we use 250 historical scenarios, the 99% value-at-risk is the mean between the
second and third largest losses:

VaRα (x;h) = −
(
Π(2:250) + (2.5− 2)

(
Π(3:250) −Π(2:250)

))
= −1

2

(
Π(2:250) + Π(3:250)

)
=

1

2

(
L(249:250) + L(248:250)

)
Remark 9 We remind that VaRα (x;h) defined by Equation (2.3) is an esti-
mator with an asymptotic variance given by Theorem 1. Suppose that the loss
of the portfolio is Gaussian and L (w) ∼ N (0, 1). The exact value-at-risk is
Φ−1 (α) and takes the values 1.28 or 2.33 if α is equal to 90% or 99%. The
standard deviation of the estimator depends on the number nS of historical
scenarios:

σ (VaRα) ≈
√
α (1− α)

√
nSφ (Φ−1 (α))

In Figure 2.4, we have reported the density function of the VaR estimator. We
notice that the estimation error decreases with nS. Moreover, it is lower for
α = 90% than for α = 99%, because the density of the Gaussian distribution
at the point x = 1.28 is larger than at the point x = 2.33.

Example 13 We consider a portfolio composed of 10 stocks Apple and 20
stocks Coca-Cola. The current date is January 2nd, 2015.

The mark-to-market of the portfolio is:

Pt (w) = 10× P1,t + 20× P2,t

where P1,t and P2,t are the stock prices of Apple and Coca-Cola. We assume
that the market risk factors corresponds to the daily stock returns R1,t and
R2,t. We deduce that the P&L for the scenario s is equal to:

Πs (w) = 10× P1,s + 20× P2,s︸ ︷︷ ︸
g(R1,s,R2,s;w)

− Pt (w)
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FIGURE 2.4: Density of the VaR estimator

where Pi,s = Pi,t×(1 +Ri,s) is the simulated price of stock i for the scenario s.
In Table 2.3, we have reported the values of the 10 first historical scenarios25.
Using these scenarios, we can calculate the simulated price Pi,s using the
current price of the stocks ($109.33 for Apple and $42.14 for Coca-Cola). For
instance, in the case of the ninth scenario, we obtain:

P1,s = 109.33× (1− 0.77%) = $108.49

P2,s = 42.14× (1− 1.04%) = $41.70

We then deduce the simulated market-to-market MtMs (w) = g (R1,s, R2,s;w),
the current value of the portfolio26 and the P&L Πs (w). These data are given
in Table 2.4. In addition to the 10 first historical scenarios, we also report
the results for the five worst cases and the last scenario27. We notice that

25For instance, the market risk factor for the first historical scenario and for Apple is
calculated as follows:

R1,1 =
109.33

110.38
− 1 = −0.95%

26We have:
Pt (w) = 10× 109.33 + 20× 42.14 = $1 936.10

27We assume that the value-at-risk is calculated using 250 historical scenarios (from 2015-
01-02 to 2014-01-07)
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the largest loss is reached for the 236th historical scenario at the date of
January 28th, 2014. If we rank the scenarios, the worst P&L are −84.34,
−51.46, −43.31, −40.75 and −35.91. We deduce that the daily historical VaR
is equal to:

VaR99% (w; one day) =
1

2
(51.46 + 43.31) = $47.39

If we assume that mc = 3, the corresponding capital charge represents 23.22%
of the portfolio’s value:

KVaR
t = 3×

√
10× 47.39 = $449.54

TABLE 2.3: Computation of the market risk factors R1,s and R2,s

s Date Apple Coca-Cola
Price R1,s Price R2,s

1 2015-01-02 109.33 −0.95% 42.14 −0.19%
2 2014-12-31 110.38 −1.90% 42.22 −1.26%
3 2014-12-30 112.52 −1.22% 42.76 −0.23%
4 2014-12-29 113.91 −0.07% 42.86 −0.23%
5 2014-12-26 113.99 1.77% 42.96 0.05%
6 2014-12-24 112.01 −0.47% 42.94 −0.07%
7 2014-12-23 112.54 −0.35% 42.97 1.46%
8 2014-12-22 112.94 1.04% 42.35 0.95%
9 2014-12-19 111.78 −0.77% 41.95 −1.04%
10 2014-12-18 112.65 2.96% 42.39 2.02%

Under Basel 2.5, we have to compute a second capital charge for the
stressed VaR. If we assume that the stressed period is from October 9th, 2007
to March 9th, 2009, we obtain 356 stressed scenarios. By applying the previ-
ous method, the six largest simulated losses are28 219.20 (29/09/2008), 127.84
(17/09/2008), 126.86 (07/10/2008), 124.23 (14/10/2008), 115.24 (23/01/2008)
and 99.55 (29/09/2008). The 99% SVaR corresponds to the 3.56th order statis-
tic. We deduce that:

SVaR 99% (w; one day) = 126.86 + (3.56− 3)× (124.23− 126.86)

= $125.38

It follows that:

KSVaR
t = 3×

√
10× 125.38 = $1 189.49

The total capital requirement under Basel 2.5 is then:

Kt = KVaR
t + KSVaR

t = $1 639.03

It represents 84.6% of the current mark-to-market!

28We indicate in brackets the scenario day of the loss.
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TABLE 2.4: Computation of the simulated P&L Πs (w)

s Date Apple Coca-Cola
MtMs (w) Πs (w)

R1,s P1,s R2,s P2,s

1 2015-01-02 −0.95% 108.29 −0.19% 42.06 1 924.10 −12.00
2 2014-12-31 −1.90% 107.25 −1.26% 41.61 1 904.66 −31.44
3 2014-12-30 −1.22% 108.00 −0.23% 42.04 1 920.79 −15.31
4 2014-12-29 −0.07% 109.25 −0.23% 42.04 1 933.37 −2.73
5 2014-12-26 1.77% 111.26 0.05% 42.16 1 955.82 19.72
6 2014-12-24 −0.47% 108.82 −0.07% 42.11 1 930.36 −5.74
7 2014-12-23 −0.35% 108.94 1.46% 42.76 1 944.57 8.47
8 2014-12-22 1.04% 110.46 0.95% 42.54 1 955.48 19.38
9 2014-12-19 −0.77% 108.49 −1.04% 41.70 1 918.91 −17.19
10 2014-12-18 2.96% 112.57 2.02% 42.99 1 985.51 49.41
23 2014-12-01 −3.25% 105.78 −0.62% 41.88 1 895.35 −40.75
69 2014-09-25 −3.81% 105.16 −1.16% 41.65 1 884.64 −51.46
85 2014-09-03 −4.22% 104.72 0.34% 42.28 1 892.79 −43.31
236 2014-01-28 −7.99% 100.59 0.36% 42.29 1 851.76 −84.34
242 2014-01-17 −2.45% 106.65 −1.08% 41.68 1 900.19 −35.91

250 2014-01-07 −0.72% 108.55 0.30% 42.27 1 930.79 −5.31

Remark 10 As the previous example has shown, directional exposures are
highly penalized under Basel 2.5. More generally, it is not always evident that
capital requirements are lower with IMA than with SMM (Crouhy et al., 2013).

2.2.1.2 The kernel density approach

Description of the kernel density estimation We consider the estima-
tion of the density function f of the random variable X. Let {x1, . . . , xn} be
a sample of X. The empirical distribution F̂ (x) = n−1

∑n
i=1 1 {xi ≤ x} indi-

cates the frequency of observations whose values are smaller than x. Because
we have dF̂ (x) = f̂ (x) dx, we deduce that:

f̂ (x) ' F̂ (x+ hhh)− F̂ (x− hhh)

2hhh

=
1

n

n∑
i=1

1

2hhh
1 {x− hhh ≤ xi ≤ x+ hhh}

The nonparametric estimator f̂ (x) is then the histogram of the sample. We
notice that we can write f̂ (x) as follows:

f̂ (x) =
1

n

n∑
i=1

1

hhh
K
(
x− xi
hhh

)
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K (u) = 1
21 {−1 ≤ u ≤ 1} is called the uniform (or rectangular) kernel. Non-

parametric estimation consists in replacing the histogram kernel by a smooth
function with the following desirable properties (Silverman, 1986):

• K (u) ≥ 0 (to ensure the positivity of the density function);

•
∫
K (u) du = 1 (to ensure that F̂ (x) =

∫ x
−∞ f̂ (y) dy is a probability

distribution function).

We generally add the symmetry property
∫
uK (u) du = 0 in order to satisfy

some empirical statistics. We then show that:

E
[
f̂n (x)− f (x)

]
≈ hhh2

2
f ′′ (x)

∫
u2K (u) du

and:
var
(
f̂n (x)

)
≈ 1

nhhh
f (x)

∫
K2 (u) du

The bias and the variance of the estimator depend on the density function f
to estimate, the bandwidth hhh and the kernel function K. The bias is sensitive
to the curvature f ′′ while the variance mainly depends on the size n of the
sample. The estimator F̂ is then defined as:

F̂ (x) =

∫ x

−∞

1

n

n∑
i=1

1

hhh
K
(
y − xi
hhh

)
dy

=
1

n

n∑
i=1

I
(
x− xi
hhh

)
where I is the integrated kernel function:

I (u) =

∫ u

−∞
K (t) dt

The most used functions are the Gaussian29 and Epanechnikov30 kernels. The
greatest challenge is the choice of the bandwidth hhh, which controls the trade-off
between bias and variance31 (Jones et al., 1996).

Application to the historical value-at-risk To estimate the value-at-
risk for the confidence level α, Gouriéroux et al. (2000) solves the equation
F̂L (VaRα (w;h)) = α or:

1

nS

nS∑
s=1

I
(
−VaRα (w;h)−Πs (w)

hhh

)
= 1− α

29We have K (u) = φ (u) and I (u) = Φ (u).
30It is also called the optimal kernel because it minimizes the mean squared error. We have
K (u) = 3/4×

(
1− u2

)
×1 {|u| ≤ 1} and I (u) = min

(
1/4×

(
3u− u3 + 2

)
× 1 {u > −1} , 1

)
.

31An optimal value is 1.364× n−1/5 × ŝ where ŝ is the standard deviation of the sample.
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If we consider Example 13 with the last 250 historical scenarios, we obtain the
results given in Figure 2.5. We have reported the estimated distribution F̂Π

of Π (w) with order statistics and Gaussian kernel methods32. We verify that
the kernel approach produces a smoother distribution. If we zoom on the 1%
quantile, we notice that the two methods give similar results. The daily VaR
with the kernel approach is equal to $47.44 whereas it was equal to $47.39
with the order statistics approach.

FIGURE 2.5: Kernel estimation of the historical VaR

Remark 11 In practice, the kernel approach gives similar figures than the
order statistics approach, especially when the number of scenarios is large.
However, the two estimators may differ in the presence of fat tails. For large
confidence levels, the order statistics approach seems to be more conservative.

2.2.2 Analytical value-at-risk

2.2.2.1 Derivation of the closed-form formula

We speak about analytical value-at-risk when we are able to find a closed-
form formula of F−1

L (α). Suppose that L (w) ∼ N
(
µ (L) , σ2 (L)

)
. In this case,

32The estimated standard deviation ŝ is equal to 17.7147. We consider the bandwidth
hhh = 1.364× n−1/5 × ŝ = 8.0027.
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we have Pr
{
L (w) ≤ F−1

L (α)
}

= α or:

Pr

{
L (w)− µ (L)

σ (L)
≤

F−1
L (α)− µ (L)

σ (L)

}
= α⇔ Φ

(
F−1
L (α)− µ (L)

σ (L)

)
= α

We deduce that:

F−1
L (α)− µ (L)

σ (L)
= Φ−1 (α)⇔ F−1

L (α) = µ (L) + Φ−1 (α)σ (L)

The expression of the value-at-risk is then33:

VaRα (w;h) = µ (L) + Φ−1 (α)σ (L) = −µ (Π) + Φ−1 (α)σ (Π) (2.4)

This formula is known as the Gaussian value-at-risk. For instance, if α = 99%
(resp. 95%), Φ−1 (α) is equal to 2.33 (resp. 1.65) and we have:

VaRα (w;h) = µ (L) + 2.33× σ (L) = −µ (Π) + 2.33× σ (Π)

Remark 12 We notice that the value-at-risk depends on the parameters µL
and σL. This is why the analytical value-at-risk is also called the parametric
value-at-risk. In practice, we don’t know these parameters and we have to esti-
mate them. This implies that the analytical value-at-risk is also an estimator.
For the Gaussian distribution, we obtain:

V̂aRα (w;h) = µ̂ (L) + Φ−1 (α) σ̂ (L)

In practice, it is extremely difficult to estimate the mean and we set µ̂ (L) = 0.

Exercise 14 We consider a short position of $1 mn in the S&P 500 futures
contract. We estimate that the annualized volatility σ̂SPX is equal to 35%.
Calculate the daily value-at-risk with a 99% confidence level.

The portfolio loss is equal to L (w) = N ×RSPX where N is the exposure
amount (−$1 mn) and RSPX is the (Gaussian) return of the S&P 500 index.
We deduce that the annualized loss volatility is σ̂ (L) = |N | × σ̂SPX. The
value-at-risk for a one-year holding period is:

VaR99% (w; one year) = 2.33× 106 × 0.35 = $815 500

By using the square-root-of-time rule, we deduce that:

VaR99% (w; one day) =
815 500√

260
= $50 575

This means that we have a 1% probability to lose more than $50 575 per day.

33We remind that the P&L Π (x) is the opposite of the portfolio loss L (x) meaning that
µ (Π) = −µ (L) and σ (Π) = σ (L).
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In finance, the standard model is the Black-Scholes model where the price
St of the asset is a geometric Brownian motion:

dSt = µSSt dt+ σSSt dWt

with Wt a Wiener process. We can show that:

lnSt2 − lnSt1 =

(
µS −

1

2
σ2
s

)
(t2 − t1) + σS (Wt2 −Wt1)

for t2 ≥ t1. We have Wt2 −Wt1 =
√
t2 − t1ε with ε ∼ N (0, 1). We finally

deduce that var (lnSt2 − lnSt1) = σ2
S (t2 − t1). Let Rs (∆t) be a sample of

log-returns measured at a regular time interval ∆t. It follows that:

σ̂S =
1√
∆t

σ (Rs (∆t))

If we consider two sample periods ∆t and ∆t′, we obtain the following rela-
tionship:

σ (Rs (∆t′)) =

√
∆t′

∆t
σ (Rs (∆t))

For the mean, we have µ̂S = ∆t−1E [Rs (∆t)] and E (Rs (∆t′)) =
(∆t′/∆t)E (Rs (∆t)). We notice that the square-root-of-time rule is only valid
for the volatility and therefore for risk measures that are linear with respect
to the volatility. In practice, there is no other solutions and this explains why
this rule continues to be used even if we know that the approximation is poor
if the portfolio loss is not Gaussian.

2.2.2.2 Gaussian VaR and Linear factor models

We consider a portfolio of n assets and a pricing function g which is linear
with respect to the asset prices. We have

g (Ft;w) =

n∑
i=1

wiPi,t

We deduce that the random P&L is:

Π (w) = Pt+h (w)− Pt (w)

=

n∑
i=1

wiPi,t+h −
n∑
i=1

wiPi,t

=

n∑
i=1

wi (Pi,t+h − Pi,t)

Here, Pi,t is known whereas Pi,t+h is random. The first idea is to choose the
factors as the future prices. The problem is that prices are far to be stationary
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meaning that we will face some issues to model the distribution FΠ. Another
idea is to write the future price as follows:

Pi,t+h = Pi,t (1 +Ri,t+h)

where Ri,t+h is the asset return between t and t+ h. In this case, we obtain:

Π (w) =

n∑
i=1

wiPi,tRi,t+h

In this approach, the asset returns are the market risk factors and each asset
has its own risk factor.

The covariance model Let Rt be the vector of asset returns. We note
Wi,t = wiPi,t the wealth invested (or the nominal exposure) in asset i and
Wt = (W1,t, . . . ,Wn,t). It follows that:

Π (w) =

n∑
i=1

Wi,tRi,t+h = W>t Rt+h

If we assume that Rt+h ∼ N (µ,Σ), we deduce that µ (Π) = W>t µ and
σ2 (Π) = W>t ΣWt. Using Equation (2.4), the expression of the value-at-risk
is:

VaRα (w;h) = −W>t µ+ Φ−1 (α)
√
W>t ΣWt

In this approach, we only need to estimate the covariance matrix of asset re-
turns to compute the value-at-risk. This explains the popularity of this model,
especially when the P&L of the portfolio is a linear function of the asset re-
turns34.

Let us consider our previous example. The nominal exposures35 are
$1 093.3 (Apple) and $842.8 (Coca-Cola). If we consider the historical prices
from 2014-01-07 to 2015-01-02, the estimated standard deviation of daily re-
turns is equal to 1.3611% for Apple and 0.9468% for Coca-Cola, whereas the
cross-correlation is equal to 12.0787%. It follows that:

σ2 (Π) = W>t ΣWt

= 1 093.32 ×
(

1.3611

100

)2

+ 842.82 ×
(

0.9468

100

)2

+

2× 12.0787

100
× 1 093.3× 842.8× 1.3611

100
× 0.9468

100
= 313.80

34For instance, this approach is frequently used by asset managers to measure the risk of
equity portfolios.

35These figures are equal to 10× 109.33 and 20× 42.14.
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If we omit the term of expected return −W>t µ, we deduce that the 99%
daily value-at-risk36 is equal to $41.21. We obtain a lower figure than with
the historical value-at-risk, which was equal to $47.39. We explain this result,
because the Gaussian distribution underestimates the probability of extreme
events and is not adapted to take into account tail risk.

The linear factor model We consider the standard linear factor model
where asset returns Rt are related to a set of risk factors Ft = (F1,t, . . . ,Fm,t)
in the following way:

Rt = BFt + εt

where E (Ft) = µ (F), cov (Ft) = Ω, E (εt) = 0 and cov (εt) = D. Ft rep-
resents the common risks whereas εt is the vector of specific or idiosyncratic
risks. This implies that Ft and εt are independent and D is a diagonal ma-
trix37. B is a (n×m) matrix that measures the sensitivity of asset returns
with respect to the risk factors. The first two moments of Rt are given by:

µ = E [Rt] = Bµ (F)

and38:
Σ = cov (Rt) = BΩB> +D

If we assume that asset returns are Gaussian, we deduce that:

VaRα (w;h) = −W>t Bµ (F) + Φ−1 (α)
√
W>t (BΩB> +D)Wt

The linear factor model plays a major role in financial modeling. The
capital asset pricing model (CAPM) developed by Sharpe (1964) is a particular
case of this model when there is a single factor, which corresponds to the
market portfolio. In the arbitrage pricing theory (APT) of Ross (1976), Ft
corresponds to a set of (unknown) arbitrage factors. They may be macro-
economic, statistical or characteristic-based factors. The three-factor model
of Fama and French (1993) is certainly the most famous application of APT.
In this case, the factors are the market factor, the size factor corresponding

36We have:
VaR99% (w; one day) = Φ−1 (0.99)

√
313.80 = $41.21

37In the following, we note D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
with σ̃i the idiosyncratic volatility of

asset i.
38We have:

Σ = E
[
(Rt − µ) (Rt − µ)>

]
= E

[
(B (Ft − µ (F) + εt)) (B (Ft − µ (F) + εt))

>
]

= BE
[
(Ft − µ (F)) (Ft − µ (F))>

]
B>t + E

[
εtε
>
t

]
= BΩB> +D
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to a long/short portfolio between small stocks and large stocks and the value
factor, which is the return of stocks with high book-to-market values minus
the return of stocks with low book-to-market values. Since its publication, the
original Fama-French factor has been extended to many other factors including
momentum, quality or liquidity factors39.

BCBS (1996a) makes direct reference to CAPM. In this case, we obtain a
single-factor model:

Rt = α+ βRmkt
t + εt

where Rmkt
t is the return of the market and β = (β1, . . . , βn) is the vector

of beta coefficients. Let σmkt be the volatility of the market risk factor. We
have var (Ri,t) = β2

i σ
2
mkt + σ̃2

i and cov (Ri,t, Rj,t) = βiβjσ
2
mkt. By omitting the

mean, we obtain:

VaRα (w;h) = Φ−1 (α)

√√√√σ2
mkt

n∑
i=1

β̃2
i + 2

∑
j>i

β̃iβ̃j +

n∑
i=1

W 2
i,tσ̃

2
i

where β̃i = Wi,tβi is the beta exposure of asset i expressed in $. With the
previous formula, we can deduce the VaR only due to the market risk factor
by omitting the specific risk40.

If we consider our previous example, we can choose the S&P 500 index
as the market risk factor. For the period 2014-01-07 to 2015-01-02, the beta
coefficient is equal to 0.8307 for Apple and 0.4556 for Coca-Cola, whereas
the corresponding idiosyncratic volatilities are 1.2241% (Apple) and 0.8887%
(Coca-Cola). As the market volatility is estimated at 0.7165%, the daily value-
at-risk is equal to $41.68 if we include specific risks. Otherwise, it is equal to
$21.54 if we only consider the effect of the market risk factor.

Application to a bond portfolio We consider a portfolio of bonds from
the same issuer. In this instance, we can model the bond portfolio by a stream
of nC coupons C (tm) with fixed dates tm ≥ t. Figure 2.6 presents an example
of aggregating cash flows with two bonds with a fixed coupon rate and two
short exposures. We note Bt (T ) the price of a zero-coupon bond at time t
for the maturity T . We have Bt (T ) = e−(T−t)Rt(T ) where Rt (T ) is the zero-
coupon rate. The sensitivity of the zero-coupon bond is

∂ Bt (T )

∂ Rt (T )
= − (T − t)Bt (T )

For a small change in yield, we obtain:

∆hBt+h (T ) ≈ − (T − t)Bt (T ) ∆hRt+h (T )

The value of the portfolio is:

39See Cazalet and Roncalli (2014) for a survey.
40We set σ̃i to 0.
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FIGURE 2.6: Cash flows of two bonds and two short exposures

Pt (w) =

nC∑
m=1

C (tm)Bt (tm)

We deduce that:

Π (w) = Pt+h (w)− Pt (w)

=

nC∑
m=1

C (tm) (Bt+h (tm)−Bt (tm))

≈ −
nC∑
m=1

C (tm) (tm − t)Bt (tm) ∆hRt+h (tm)

=

nC∑
m=1

Wi,tm∆hRt+h (tm)

withWi,tm = C (tm) (tm − t)Bt (tm). This expression of the P&L is similar to
this obtained with a portfolio of stocks. If we assume that the yield variations
are Gaussian, the value-at-risk is equal to:

VaRα (w;h) = −W>t µ+ Φ−1 (α)
√
W>t ΣWt

where µ and Σ are the mean and the covariance matrix of the vector of yield
changes (∆hRt+h (t1) , . . . ,∆hRt+h (tnc)).

Example 15 We consider an exposure on a US bond at December 31st, 2014.
The notional of the bond is 100 whereas the annual coupons are equal to 5.
The remaining maturity is five years and the fixing dates are at the end of
December. The number of bonds hold in the portfolio is 10 000.

Using the US zero-coupon rates41, we obtain the following figures for one

41The data comes from the Datastream database. The zero-coupon interest rate of ma-
turity yy years and mm months corresponds to the code USyyYmm.
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bond at December 31st, 2014:

tm − t C (tm) Rt (tm) Bt (tm) Wtm

1 5 0.431% 0.996 −4.978
2 5 0.879% 0.983 −9.826
3 5 1.276% 0.962 −14.437
4 5 1.569% 0.939 −18.783
5 105 1.777% 0.915 −480.356

At the end of December 2014, the one-year zero-coupon rate is 0.431%, the
two-year zero-coupon rate is 0.879%, etc. We deduce that the bond price
is $115.47 and the total exposure is $1 154 706. Using the historical period of
year 2014, we estimate the covariance matrix between daily changes of the five
zero-coupon rates42. We deduce that the Gaussian VaR of the bond portfolio
is equal to $4 971. If the multiplicative factor mc is set to 3, the required
capital KVaR

t is equal to $47 158 or 4.08% of the mark-to-market. We can
compare these figures with those obtained with the historical value-at-risk. In
this instance, the daily value-at-risk is higher and equal to $5 302.

Remark 13 The previous analysis assumes that the risk factors correspond
to the yield changes, meaning that the calculated value-at-risk only concerns
interest-rate risk. Therefore, it can not capture all the risks if the bond portfolio
is subject to credit risk.

Defining risk factors with the principal component analysis In the
previous paragraph, the bond portfolio was very simple with only one bond
and one yield curve. In practice, the bond portfolio contains streams of
coupons for many maturities and yield curves. It is therefore necessarily to
reduce the dimension of the VaR calculation. The underlying idea is that we
don’t need to use the comprehensive set of zero-coupon rates to represent the
set of risk factors that affects the yield curve. For instance, Nelson and Siegel
(1987) proposes a three-factor parametric model to define the yield curve.
Another representation of the yield curve has been formulated by Litterman
and Scheinkman (1991), who propose to characterize the factors using the
principal component analysis (PCA).

Let Σ be the covariance matrix associated to the random vector Xt of
dimension n. We consider the eigendecomposition Σ = V ΛV > where Λ =

42The standard deviation is respectively equal to 0.746 bps for ∆hRt (t+ 1), 2.170 bps
for ∆hRt (t+ 2), 3.264 bps for ∆hRt (t+ 3), 3.901 bps for ∆hRt (t+ 4) and 4.155 bps for
∆hRt (t+ 5) where h corresponds to one trading day. For the correlation matrix, we get:

ρ =


100.000
87.205 100.000
79.809 97.845 100.000
75.584 95.270 98.895 100.000
71.944 92.110 96.556 99.219 100.000
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diag (λ1, . . . , λn) is the diagonal matrix of eigenvalues with λ1 ≥ λ2 ≥ . . . ≥ λn
and V is an orthornormal matrix. In the principal component analysis, the
(endogenous) risk factors are Ft = V >Xt. The reduction method by PCA
consists in selecting the first m risk factors with m ≤ n. When applied to the
value-at-risk calculation, it can be achieved in two different ways:

1. In the parametric approach, the covariance matrix Σ is replaced by
Σ? = V Λ?V > where Λ? = diag (λ1, . . . , λm, 0, . . . , 0).

2. In the historical method, we only consider the first m PCA factors
F?t = (F1,t, . . . ,Fm,t) or equivalently the modified random vector43
X?
t = V F•t with F•t = (F?t ,0).

If we apply this extracting method of risk factors to Example 15, the
eigenvalues are equal to 47.299 × 108, 0.875 × 108, 0.166 × 108, 0.046 × 108,
0.012× 108 whereas the matrix V of eigenvectors is:

V =


0.084 −0.375 −0.711 0.589 0.002
0.303 −0.610 −0.215 −0.690 −0.114
0.470 −0.389 0.515 0.305 0.519
0.567 0.103 0.195 0.223 −0.762
0.599 0.570 −0.381 −0.183 0.371


We deduce that:

F1,t = 0.084×Rt (t+ 1) + 0.303×Rt (t+ 2) + · · ·+ 0.599×Rt (t+ 5)
...

F5,t = 0.002×Rt (t+ 1)− 0.114×Rt (t+ 2) + · · ·+ 0.371×Rt (t+ 5)

We retrieve the three factors of Litterman and Scheinkman, which are a factor
of general level (F1,t), a slope factor (F2,t) and a convexity or curvature factor
(F3,t). In the following table, we report the incremental VaR of each risk
factor, which is defined as difference between the value-at-risk including the
risk factor and the value-at-risk excluding the risk factor:

VaR F1,t F2,t F3,t F4,t F5,t Sum
Gaussian 4934.71 32.94 2.86 0.17 0.19 4970.87
Historical 5857.39 −765.44 216.58 −7.98 1.41 5301.95

We notice that the value-at-risk is principally explained by the first risk factor,
that is the general level of interest rates, whereas the contribution of the slope
and convexity factors is small and the contribution of the remaining risk fac-
tors is negligible. This result can be explained by the long-only characteristics
of the portfolio. Nevertheless, even if we consider a more complex bond port-
folio, we generally observed than a few number of factors is sufficient to model

43Because we have V −1 = V >.
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all the risk dimensions of the yield curve. An example is provided in Figure 2.7
with a stream of long and short exposures44. Using the period January 2014
– December 2014, the convergence of the value-at-risk is achieved with six
factors. This result is connected to the requirement of the Basel Committee
that “banks must model the yield curve using a minimum of six risk factors”.

FIGURE 2.7: Convergence of the VaR with PCA risk factors

2.2.2.3 Volatility forecasting

The challenge of the Gaussian value-at-risk is the estimation of the loss
volatility or the covariance matrix of asset returns/risk factors. The issue is
not to consider the best estimate for describing the past, but to use the best
estimate for forecasting the loss distribution. In the previous illustrations,
we use the empirical covariance matrix or the empirical standard deviation.
However, other estimators have been proposed by academics and professionals.

The original approach implemented in RiskMetrics uses an exponentially
weighted moving average (EWMA) for modeling the covariance between asset

44We have Ct (t+ 1/2) = 400, Ct (t+ 1) = 300, Ct (t+ 3/2) = 200, Ct (t+ 2) = −200,
Ct (t+ 3) = −300, Ct (t+ 4) = −500, Ct (t+ 5) = 500, Ct (t+ 6) = 400, Ct (t+ 7) = −300,
Ct (t+ 10) = −700, Ct (t+ 10) = 300 and Ct (t+ 30) = 700.
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returns45:
Σ̂t = λΣ̂t−1 + (1− λ)Rt−1R

>
t−1

where the parameter λ ∈ [0, 1] is the decay factor, which represents the degree
of weighting decrease. Using a finite sample, the previous estimate is equivalent
to a weighted estimator:

Σ̂t =

nS∑
s=1

$sRt−sR
>
t−s

with:

$s =
(1− λ)

(1− λnS )
λs−1

In Figure 2.8, we represent the weights $s for different values of λ when the
number nS of historical scenarios is equal to 250. We verify that this estimator
gives more importance to the current values than to the past values. For
instance, if λ is equal to 0.9446, 50% of the weights corresponds to the twelve
first observations and the half-life is 16.7 days. We also observe that the case
λ = 1 corresponds to the standard covariance estimator with uniform weights.

FIGURE 2.8: Weights of the EWMA estimator

45We assume that the mean of expected returns is equal to 0.
46It is the original value of the RiskMetrics system (J.P. Morgan, 1996).
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Another approach to model volatility in risk management is to consider
that the volatility is time-varying. In 1982, Engle introduced a class of stochas-
tic processes in order to take into account the heteroscedasticity of asset re-
turns:

Ri,t = µi + εt with εt = σtet and et ∼ N (0, 1)

where the time-varying variance ht = σ2
t satisfies the following equation:

ht = κ+ α1ε
2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q

with κ > 0 and αj ≥ 0 for all j > 0. We note that the conditional variance
of εt is not constant and depends on the past values of εt. A substantial
impact on the asset return Ri,t implies an increase of the conditional variance
of εt+1 at time t + 1 and therefore an increase of the probability to observe
another substantial impact on Ri,t+1. Therefore, this means that the volatility
is persistent, which is a well-known stylized fact in finance (Chou, 1988).
This type of stochastic processes, known as ARCH models (Autoregressive
Conditional Heteroscedasticity), has been extended by Bollerslev (1986) in
the following way:

ht = κ+ δ1ht−1 + δ2ht−2 + · · ·+ δpht−p +

α1ε
2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q

In this case, the conditional variance depends also on its past values and we
obtain a GARCH(p,q) model. If

∑p
i=1 δi +

∑q
i=1 αi = 1, we may show that

the process ε2
t has a unit root and the model is called an integrated GARCH

(or IGARCH) process. If we neglect the constant term, the expression of the
IGARCH(1,1) process is ht = (1− α)ht−1 + αR2

i,t−1 or equivalently:

σ2
t = (1− α)σ2

t−1 + αR2
i,t−1

This estimator is then an exponentially weighted moving average with a factor
λ equal to 1− α.

In Figure 2.9, we have reported the annualized volatility of the S&P 500
index estimated using the GARCH model (first panel). The ML estimates of
the parameters are δ̂1 = 0.8954 and α̂1 = 0.0929. We verify that this esti-
mated model is close to an IGARCH process. In the other panels, we compare
the GARCH volatility with the empirical one-year historical volatility, the
EWMA volatility (with λ = 0.94) and a short volatility based on 20 trad-
ing days. We observe large differences between the GARCH volatility and
the one-year historical volatility, but the two others estimators (EWMA and
short volatility) give similar results to the GARCH estimator. To compare
the out-of-sample forecasting accuracy of these different models, we consider
respectively a long and a short exposure on the S&P 500 index. At time t, we
compute the value-at-risk for the next day and we compare this figure with the
realized mark-to-market. Table 2.5 show the number of exceptions per year
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FIGURE 2.9: Comparison of GARCH and EWMA volatilities (S&P 500)

TABLE 2.5: Number of exceptions per year for long and short exposures on
the S&P 500 index

Year Long exposure Short exposure
GARCH 1Y EWMA 20D H GARCH 1Y EWMA 20D H

2000 5 5 2 4 4 5 8 4 6 4
2001 4 3 2 3 2 2 4 2 5 2
2002 2 5 2 4 3 5 9 4 6 5
2003 1 0 0 2 0 1 0 1 4 0
2004 2 0 2 6 0 0 0 0 2 1
2005 1 1 2 4 3 1 4 1 6 3
2006 2 4 3 4 4 2 5 3 5 3
2007 6 15 6 10 7 1 9 0 3 7
2008 7 23 5 7 10 4 12 4 3 8
2009 5 0 1 6 0 2 2 2 3 0
2010 7 6 5 8 3 3 5 2 7 3
2011 6 8 6 7 4 2 8 1 6 3
2012 5 1 4 5 0 3 1 2 7 1
2013 4 2 3 9 2 2 2 2 4 1
2014 6 9 7 11 2 2 4 2 2 4
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for the different models: the GARCH (1,1) model, the Gaussian value-at-risk
with a one-year historical volatility, the EWMA model with λ = 0.94, the
Gaussian value-at-risk with a twenty-day short volatility and the historical
value-at-risk based on the last 260 trading days. We observe that the GARCH
model produces the smallest number of exceptions, whereas the largest num-
ber of exceptions occurs in the case of the Gaussian value-at-risk with the
one-year historical volatility. We also notice that the number of exceptions
is smaller for the short exposure than for the long exposure. This is due to
the asymmetry of returns, because extreme negative returns are larger than
extreme positive returns on average.

2.2.2.4 Extension to other probability distributions

The Gaussian value-at-risk has been strongly criticized because it depends
only on the first two moments of the loss distribution. Indeed, there is a lot
of evidence that asset returns and risk factors are not Gaussian (Cont, 2001).
They generally present fat tails and skew effects. It is therefore interesting to
consider alternative probability distributions, which are more appropriate to
take into account these stylized facts.

Let µr = E [(X − E [X])
r
] be the centered r-order moment of the random

variable X. The skewness γ1 = µ3/µ
3/2
2 is the measure of the asymmetry

of the loss distribution. If γ1 < 0 (resp. γ1 > 0), the distribution is left-
skewed (resp. right-skewed) because the left (resp. right) tail is longer. For
the Gaussian distribution, γ1 is equal to zero. To characterize whether the
distribution is peaked or flat relative to the normal distribution, we consider
the excess kurtosis γ2 = µ4/µ

2
2 − 3. If γ2 > 0, the distribution presents heavy

tails. In the case of the Gaussian distribution, γ2 is exactly equal to zero. We
have illustrated the skewness and kurtosis statistics in Figure 2.10. Whereas we
generally encounter skewness risk in credit and hedge fund portfolios, kurtosis
risk has a stronger impact in equity portfolios. For example, if we consider
the daily returns of the S&P 500 index, we obtain an empirical distribution47

which has a higher kurtosis than the fitted Gaussian distribution (Figure 2.11).

An example of fat-tail distributions is the Student’s t probability distri-
bution. If X ∼ tν , we have E [X] = 0 and var (X) = ν/ (ν − 2) for ν > 2.
Because X has a fixed mean and variance for a given degrees of freedom, we
need to introduce location and scale parameters to model the future loss:

L (w) = ξ + ωX

47It is estimated using the kernel approach.
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FIGURE 2.10: Examples of skewed and fat tailed distributions

FIGURE 2.11: Estimated distribution of S&P 500 daily returns (2007-2014)
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To calculate the value-at-risk, we proceed as in the Gaussian case. We have:

Pr
{
L (w) ≤ F−1

L (α)
}

= α ⇔ Pr

{
X ≤

F−1
L (α)− ξ

ω

}
= α

⇔ Tv

(
F−1
L (α)− ξ

ω

)
= α

⇔ F−1
L (α) = ξ + T−1

v (α)ω

In practice, the parameters ξ and ω are estimated by the method of mo-
ments48. We finally deduce that:

VaRα (w;h) = µ (L)+T−1
v (α)σ (L)

√
ν − 2

ν
= −µ (Π)+T−1

v (α)σ (Π)

√
ν − 2

ν

Let us illustrate the impact of the probability distribution with Example 13.
By using different values of ν, we obtain the following results.

ν 3.00 3.50 4.00 5.00 6.00 10.00 1000 ∞
ω 10.23 11.60 12.53 13.72 14.46 15.84 17.70 17.71
VaRα (w; 1D) 46.44 47.09 46.93 46.17 45.46 43.79 41.24 41.21

If ν →∞, we verify that the Student’s t value-at-risk converges to the Gaus-
sian value-at-risk ($41.21). If the degrees of freedom is equal to 4, it is closer
to the historical value-at-risk ($47.39).

We can derive closed-form formula for several probability distributions.
However, most of them are not used in practice, because these methods are
not appealing from a professional point of view. Nevertheless, one approach is
very popular among professionals. Using the Cornish-Fisher expansion of the
normal distribution, Zangari (1996) proposes to estimate the value-at-risk in
the following way:

VaRα (w;h) = µ (L) + z (α; γ1 (L) , γ2 (L))× σ (L) (2.5)

where:

z (α; γ1, γ2) = zα+
1

6

(
z2
α − 1

)
γ1+

1

24

(
z3
α − 3zα

)
γ2−

1

36

(
2z3
α − 5zα

)
γ2

1 (2.6)

and zα = Φ−1 (α). This is the same formula as the one used for the Gaus-
sian value-at-risk but with another scaling parameter49. In Equation (2.5), the
skewness and excess kurtosis coefficients are those of the loss distribution50.
Table 2.6 shows the value of the Cornish-Fisher quantile z (99%; γ1, γ2) for
different values of skewness and excess kurtosis. We can not always calculate

48We have E [ξ + ωX] = ξ and var (ξ + ωX) =
(
ω2ν

)
/ (ν − 2).

49If γ1 = γ2 = 0, we retrieve the Gaussian value-at-risk with z (α; 0, 0) = Φ−1 (α).
50If we prefer to use the moments of the P&L, we have to consider the relationships

γ1 (L) = −γ1 (Π) and γ2 (Π) = γ2 (Π).
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TABLE 2.6: Value of the Cornish-Fisher quantile z (99%; γ1, γ2)

γ1
γ2

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

−2.00 0.99
−1.00 1.68 1.92 2.15 2.38 2.62 2.85
−0.50 2.10 2.33 2.57 2.80 3.03 3.27 3.50

0.00 2.33 2.56 2.79 3.03 3.26 3.50 3.73 3.96
0.50 2.83 3.07 3.30 3.54 3.77 4.00 4.24
1.00 3.15 3.39 3.62 3.85 4.09 4.32
2.00 3.93

the quantile because Equation (2.6) does not define necessarily a probabil-
ity distribution if the parameters γ1 and γ2 does not satisfy the following
condition:

∂ z (α; γ1, γ2)

∂ zα
≥ 0⇔ γ2

1

9
− 4

(
γ2

8
− γ2

1

6

)(
1− γ2

8
+

5γ2
1

36

)
≤ 0

We have reported the domain of definition in Figure 2.12. For instance, Equa-
tion (2.6) is not valid if the skewness is equal to 2 and the excess kurtosis is
equal to 3. If we analyze results in Table 2.6, we do not observe that there
is a monotone relationship between the skewness and the quantile. To under-
stand this curious behavior, we report the partial derivatives of z (α; γ1, γ2)
with respect to γ1 and γ2 in Figure 2.12. We notice that their signs depend on
the confidence level α, but also on the skewness for ∂γ1

z (α; γ1, γ2). Another
drawback of the Cornish-Fisher approach concerns the statistical moments,
which are not necessarily equal to the input parameters if the skewness and
the kurtosis are not close to zero51. Contrary to what professionals commonly
think, the Cornish-Fisher expansion is therefore difficult to implement.

When we consider other probability distribution than the normal distribu-
tion, the difficulty concerns the multivariate case. In the previous examples,
we directly model the loss distribution, that is the reduced form of the pricing
system. To model the joint distribution of risk factors, two main approaches
are available. The first approach considers copula functions and the value-at-
risk is calculated using the Monte Carlo simulation method (see Chapters 15
and 17). The second approach consists in selecting a multivariate probability
distribution, which have some appealing properties. For instance, it should

51Let Z be a Cornish-Fisher random variable satisfying F−1 (α) = z (α; γ1, γ2). A direct
application of the result in Appendix A.2.2.2 gives:

E [Zr] =

∫ 1

0
zr (α; γ1, γ2) dα

Using numerical integration, we can show that γ1 (Z) 6= γ1 and γ2 (Z) 6= γ2 if γ1 and γ2

are large enough.
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FIGURE 2.12: Derivatives and definition domain of the Cornish-Fisher ex-
pansion

be flexible enough to calibrate the first two moments of the risk factors and
should also include asymmetry (positive and negative skewness) and fat tails
(positive excess kurtosis) in a natural way. In order to obtain an analytical
formula for the value-at-risk, it must be tractable and verify the closure prop-
erty under affine transformation. This implies that if the random vector X
follows a certain class of distribution, then the random vector Y = A + BX
belongs also to the same class. These properties reduce dramatically the set
of eligible multivariate probability distributions, because the potential candi-
dates are mostly elliptical distributions. Such examples are the skew normal
and t distributions presented in Appendix A.2.1 in page 451.

Exercise 16 We consider a portfolio of three assets and assume that their
annualized returns follows a multivariate skew normal distribution. The loca-
tion parameters are equal to 1%, −2% and 15% whereas the scale parameters
are equal to 5%, 10% and 20%. The correlation parameters Ci,j to describe
the dependence between the skew normal variables are given by the following
matrix:

C =

 1.00
0.35 1.00
0.20 −0.50 1.00
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FIGURE 2.13: Skew normal distribution of asset returns

The three assets have different skewness profiles, and the shape parameters are
equal to 0, 10 and −15.50.

In Figure 2.13, we have reported the density function of the three asset
returns52. The return of the first asset is close to be Gaussian whereas the
two other assets exhibit respectively negative and positive skews. Moments
are given in the table below:

Asset i µi (in %) σi (in %) γ1,i γ2,i

1 1.07 5.00 0.00 0.00
2 4.36 7.72 0.24 0.13
3 0.32 13.58 −0.54 0.39

Let us consider the portfolio w = ($500, $200, $300). The annualized P&L
Π (w) is equal to w>R with R ∼ SN (ξ,Ω, η). We deduce that Π (w) ∼
SN (ξw, ωw, ηw) with ξw = 46.00, ωw = 66.14 and ηw = −0.73. We finally
deduce that the one-year 99% value-at-risk is equal to $123.91. If we use the
multivariate skew t distribution in place of the multivariate skew normal dis-
tributions to model asset returns and if we use the same parameter values,
the one-year 99% value-at-risk becomes $558.35 for ν = 2, $215.21 for ν = 5

52We also show the density functions in the case of the skew t distribution with ν = 1
and ν = 4.



92 Lecture Notes on Risk Management & Financial Regulation

and $130.47 for ν = 50. We verify that the skew t value-at-risk converges to
the skew normal value-at-risk as the number of degrees of freedom ν tends to
+∞.

The choice of the probability distribution is an important issue and raises
the question of model risk. In this instance, the Basel Committee justifies the
introduction of the penalty coefficient in order to reduce the risk of a wrong
specification (Stahl, 1997). For example, imagine that we calculate the value-
at-risk with a probability distribution F while the true probability distribution
of the loss portfolio is H. The multiplication factor mc defines then a capital
buffer such that we are certain that the confidence level of the value-at-risk
will be at least equal to α:

Pr{L (w) ≤ mc ×VaR(F)
α (w)︸ ︷︷ ︸

Capital

} ≥ α (2.7)

This implies that H
(
mc ×VaR(F)

α (w)
)
≥ α and mc×VaR(F)

α (w) ≥ H−1 (α).
We finally deduce that:

mc ≥
VaR(H)

α (w)

VaR(F)
α (w)

In the case where F and H are the normal and Student’s t distributions, we
obtain53:

mc ≥
√
ν − 2

2

T−1
ν (α)

Φ−1 (α)

Below is the lower bound of mc for different values of α and ν.

α/ν 3 4 5 6 10 50 100

90% 0.74 0.85 0.89 0.92 0.96 0.99 1.00
95% 1.13 1.14 1.12 1.10 1.06 1.01 1.01
99% 1.31 1.26 1.21 1.18 1.10 1.02 1.01
99.9% 1.91 1.64 1.48 1.38 1.20 1.03 1.02
99.99% 3.45 2.48 2.02 1.76 1.37 1.06 1.03

For instance, we have mc ≥ 1.31 when α = 99% and ν = 3.
Stahl (1997) considers the general case when F is the normal distribution

and H is an unknown probability distribution. Let X be a given random
variable. The Chebyshev’s inequality states that:

Pr {(|X − µ (X)| > k × σ (X))} ≤ k−2

for any real number k > 0. If we apply this theorem to the value-at-risk, we
obtain54:

Pr

{
L (w) ≤

√
1

1− α
σ (L)

}
≥ α

53We remind that the Gaussian value-at-risk is equal to Φ−1 (α)σ (L) whereas the Stu-
dent’s t value-at-risk is equal to

√
(ν − 2) /2 ·T−1

ν (α)σ (L).
54We set α = 1− k−2.



Market Risk 93

Using Equation (2.7), we deduce that:

mc =

√
1

1− α
σ (L)

VaR(F)
α (w)

In the case of the normal distribution, we finally obtain that the multiplicative
factor is:

mc =
1

Φ−1 (α)

√
1

1− α

This ratio is the multiplication factor to apply in order to be sure that the
confidence level of the value-at-risk is at least equal to α if we use the normal
distribution to model the portfolio loss. In the case where the probability
distribution is symmetric, this ratio becomes:

mc =
1

Φ−1 (α)

√
1

2− 2α

In Table 2.7, we report the values of mc for different confidence level. If α is
equal to 99%, the multiplication factor is equal to 3.04 if the distribution is
symmetric and 4.30 otherwise.

TABLE 2.7: Value of the multiplication factor mc deduced from the Cheby-
shev’s inequality

α (in %) 90.00 95.00 99.00 99.25 99.50 99.75 99.99

Symmetric 1.74 1.92 3.04 3.36 3.88 5.04 19.01
Asymmetric 2.47 2.72 4.30 4.75 5.49 7.12 26.89

Remark 14 Even if the previous analysis justifies the multiplication factor
from a statistical point of view, we face two main issues. First, the multipli-
cation factor assumes that the bank uses a Gaussian value-at-risk. It was the
case for many banks in the early 1990s, but they use today historical value-
at-risk measures. Some have suggested that the multiplication factor has been
introduced in order to reduce the difference in terms of regulatory capital be-
tween SMM and IMA and it is certainly the case. The second issue concerns
the specificity of the loss distribution. For many positions like long-only un-
levered portfolios, the loss is bounded. If we use a Gaussian value-at-risk, the
regulatory capital satisfies55 K = KVaR + KSVaR > 13.98 · σ (L) where σ (L)
is the non-stressed loss volatility. This implies that the value-at-risk is larger
than the portfolio value if σ (L) > 7.2%! There is a direct contradiction here.

55Because we have 2×mc × 2.33 > 13.98
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2.2.3 Monte Carlo value-at-risk

In this approach, we postulate a given probability distribution H for the
risk factors:

(F1,t+h, . . . ,Fm,t+h) ∼ H

Then, we simulate nS scenarios of risk factors and calculate the simulated P&L
Πs (w) for each scenario s. Finally, we estimate the value-at-risk by the method
of order statistics. The Monte Carlo method to calculate the value-at-risk is
therefore close to the historical method. The only difference is that it uses
simulated scenarios instead of historical scenarios. This implies that the Monte
Carlo approach is not limited by the number of scenarios. By construction, the
Monte Carlo value-at-risk is also similar to the analytical value-at-risk, because
they both specify the parametric probability distribution of risk factors. In
summary, we can say that:

• the Monte Carlo VaR is an historical VaR with simulated scenarios;

• the Monte Carlo VaR is a parametric VaR for which it is difficult to find
an analytical formula.

Let us consider Example 16. The expression of the P&L is:

Π (w) = 500R1 + 200R2 + 300R3

Because we know that the combination of the componoents of a skew normal
random vector is a skew normal random variable, we were able to compute the
analytical quantile of Π (w) at the 1% confidence level. Suppose now that we
don’t know the analytical distribution of Π (w). We can repeat the exercise by
using the Monte Carlo method. At each simulation s, we generate the random
variates (R1,s, R2,s, R3,s) such that:

(R1,s, R2,s, R3,s) ∼ SN (ξ,Ω, η)

and the corresponding P&L Πs (w) = 500R1,s+200R2,s+300R3,s. The Monte
Carlo value-at-risk is the ns (1− α)

th order statistic:

V̂aRα (nS) = −Π(ns(1−α):ns) (w)

Using the law of large numbers, we can show that the MC estimator converges
to the exact VaR:

lim
nS→∞

V̂aRα (nS) = VaRα

In Figure 2.14, we report four Monte Carlo runs with 10 000 simulated scenar-
ios. We notice that the convergence of the Monte Carlo VaR to the analytical
VaR is slow56, because asset returns present high skewness. The convergence
will be faster if the probability distribution of risk factors is close to be normal
and has no fat tails.

56We have previously found that the exact VaR is equal to $123.91.
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FIGURE 2.14: Convergence of the Monte Carlo VaR when asset returns are
skew normal

Remark 15 The Monte Carlo value-at-risk has been extensively studied with
heavy-tailed risk factors (Dupire, 1998; Eberlein et al. (1998); Glasserman et
al., 2002). In those cases, one needs to use advanced and specific methods to
reduce the variance of the estimator57.

Example 17 We use a variant of Example 15 in page 79. We consider that
the bond is exposed to credit risk. In particular, we assume that the current
default intensity of the bond issuer is equal to 200 bps whereas the recovery
rate is equal to 50%.

In the case of a defaultable bond, the coupons and the notional are paid
until the issuer does not default whereas a recovery rate is applied if the issuer
defaults before the maturity of the bond. If we assume that the recovery is
paid at maturity, we can show that the bond price under default risk is:

Pt =
∑
tm≥t

C (tm)Bt (tm) St (tm) +NBt (T ) (St (T ) + Rt (1− St (T )))

where St (tm) is the survival function at time tm andRt is the current recovery
rate. We retrieve the formula of the bond price without default risk if St (tm) =

57These techniques will be presented in Chapter 16.
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1. Using the numerical values of the parameters, the bond price is equal to
$109.75 and is lower than the non-defaultable bond price58. If we assume that
the default time is exponential with St (tm) = e−λt(tm−t), we have:

Pt+h =
∑
tm≥t

C (tm) e(tm−t−h)Rt+h(tm)e−λt+h(tm−t−h) +

Ne(T−t−h)Rt+h(T )
(
Rt+h + (1−Rt+h) e−λt+h(T−t−h)

)
We define the risk factors as the zero-coupon rates, the default intensity and
the recovery rate:

Rt+h (tm) ' Rt (tm) + ∆hRt+h (tm)

λt+h = λt + ∆hλt+h

Rt+h = Rt + ∆hRt+h

We assume that the three risk factors are independent and follow the following
probability distributions:

(∆hRt+h (t1) , . . . ,∆hRt+h (tn)) ∼ N (0,Σ)

∆hλt+h ∼ N
(
0, σ2

λ

)
∆hRt+h ∼ U (a, b)

We can then simulate the daily P&L Π (w) = w (Pt+h − Pt) using the above
specifications. For the numerical application, we use the covariance matrix
given in Footnote 42 whereas the values of σλ, a and b are equal to 20 bps,
−10% and 10%. In Figure 2.15, we have estimated the density of the daily
P&L using 100 000 simulations. IR corresponds to the case when risk factors
are only the interest rates59. The case IR/S considers that both Rt (tm) and
λt are risk factors whereas Rt is assumed to be constant. Finally, we include
the recovery risk in the case IR/S/RR. Using 10 millions of simulations, we
find that the daily value-at-risk is equal to $4 730 (IR), $13 460 (IR/S) and
$18 360 (IR/S/RR). We see the impact of taking into account default risk in
the calculation of the value-at-risk.

2.2.4 The case of options and derivatives

Special attention should be paid to portfolios of derivatives, because their
risk management is much more complicated than a long-only portfolio of tra-
ditional assets (Duffie and Pan, 1997). They involve non-linear exposures to
risk factors that are difficult to measure, they are sensitive to parameters that
are not always observable and they are generally traded on OTC markets. In
this section, we provide an overview of the challenges that arise when mea-
suring and managing the risk of these assets. Chapter 12 complements it with

58We remind that it was equal to $115.47.
59This implies that we set ∆hλt+h and ∆hRt+h to zero in the Monte Carlo procedure.
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FIGURE 2.15: Probability density function of the daily P&L with credit
risk

a more exhaustive treatment of hedging and pricing issues as well as model
risk.

2.2.4.1 Identification of risk factors

Let us consider an example of a portfolio containing wS stocks and wC
call options on this stock. We note St and Ct the stock and option prices at
time t. The P&L for the holding period h is equal to:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)

If we use asset returns as risk factors, we get:

Π (w) = wSStRS,t+h + wCCtRC,t+h
where RS,t+h and RC,t+h are the returns of the stock and the option for the
period [t, t+ h]. In this approach, we identify two risk factors. The problem
is that the option price Ct is a non-linear function of the underlying price St:

Ct = fC (St)

This implies that:

Π (w) = wSStRS,t+h + wC (fC (St+h)− Ct)
= wSStRS,t+h + wC (fC (St (1 +RS,t+h))− Ct)
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The P&L depends then on a single risk factor RS . We notice that we can write
the return of the option price as a non-linear function of the stock return:

RC,t+h =
fC (St (1 +RS,t+h))− Ct

Ct

The problem is that the probability distribution of RC is non-stationary and
depends on the value of St. Therefore, the risk factors can not be the random
vector (RS , RC) because they require too complex modeling.

Risk factors are often explicit in primary financial assets (equities, bonds,
currencies), which is not the case with derivatives. In the previous example,
we have identified the return of the underlying asset as a risk factor for the
call option. In the Black-Scholes, the price of the call option is given by:

CBS (St,K,Σt, T, bt, rt) = Ste
(bt−rt)τΦ (d1)−Ke−rtτΦ (d2)

where St is the current price of the underlying asset, K is the option strike,
Σt is the volatility parameter, T is the maturity date, bt is the cost-of-carry60

and rt is the interest rate. The parameter τ = T − t is the time to maturity
whereas the coefficients d1 and d2 are defined as follows:

d1 =
1

Σt
√
τ

(
ln
St
K

+ btτ

)
+

1

2
Σt
√
τ

d2 = d1 − Σt
√
τ

We can then write the option price as follows:

Ct = fBS (θcontract; θ)

where θcontract are the parameters of the contract (strike K and maturity T )
and θ are the other parameters than can be objective as the underlying price
St or subjective as the volatility Σt. Any one of these parameters θ may serve
as risk factors:

• St is obviously a risk factor;

• if Σt is not constant, the option price may be sensitive to the volatility
risk;

• the option may be impacted by changes in the interest rate or the cost-
of-carry.

60The cost-of-carry depends on the underlying asset. We have bt = rt for non-dividend
stocks and total return indices, bt = rt − dt for stocks paying a continuous dividend yield
dt, bt = 0 for forward and futures contracts and bt = rt − r?t for foreign exchange options
where r?t is the foreign interest rate.
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The risk manager faces here a big issue, because the risk measure will
depend on the choice of the risk factors61. A typical example is the volatility
parameter. We observe a difference between the historical volatility σ̂t and
the Black-Scholes volatility Σt. Because this implied volatility is not a market
price, its value will depend on the option model and the assumptions, which are
required to calibrate it. For instance, it will be different if we use a stochastic
volatility model or a local volatility model. Even if two banks use the same
model, they will certainly obtain two different values of the implied volatility,
because there is little possibility that they exactly follows the same calibration
procedure.

With the underlying asset St, the implied volatility Σt is the most impor-
tant risk factor, but other risk factors may be determinant. They concern the
dividend risk for equity options, the yield curve risk for interest rate options,
the term structure for commodity options or the correlation risk for basket
options. In fact, the choice of risk factors is not always obvious because it is
driven by the pricing model and the characteristics of the option. We will take
a closer look at this point in Chapter 12.

2.2.4.2 Methods to calculate the value-at-risk

The method of full pricing To calculate the value-at-risk of option port-
folios, we use the same approaches as previously. The difference with primary
financial assets comes from the pricing function which is non-linear and more
complex. In the case of historical and Monte Carlo methods, the P&L of the
sth scenario has the following expression:

Πs (w) = g (F1,s, . . . ,Fm,s;w)− Pt (w)

In the case of the introducing example, the P&L becomes then:

Πs (w) =

{
wSStRs + wC (fC (St (1 +Rs) ; Σt)− Ct) with one risk factor
wSStRs + wC (fC (St (1 +Rs) ,Σs)− Ct) with two risk factors

where Rs and Σs are the asset return and the implied volatility generated by
the sth scenario. If we assume that the interest rate and the cost-of-carry are
constant, the pricing function is:

fC (S; Σ) = CBS (S,K,Σ, T − h, bt, rt)

and we notice that the remaining maturity of the option decreases by h days.
In the model with two risk factors, we have to simulate the underlying price
and the implied volatility. For the single factor model, we use the current
implied volatility Σt instead of the simulated value Σs.

Example 18 We consider a long position on 100 call options with strike K =

61We encounter the same difficulties for pricing and hedging purposes.
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100. The value of the call option is $4.14, the residual maturity62 is 52 days
and the current price of the underlying asset is $100. We assume that Σt =
20% and bt = rt = 5%. The objective is to calculate the daily value-at-risk
with a 99% confidence level. For that, we consider 250 historical scenarios,
whose the first nine values are the following:

s 1 2 3 4 5 6 7 8 9
Rs −1.93 −0.69 −0.71 −0.73 1.22 1.01 1.04 1.08 −1.61

∆Σs −4.42 −1.32 −3.04 2.88 −0.13 −0.08 1.29 2.93 0.85

TABLE 2.8: Daily P&L of the long position on the call option when the risk
factor is the underlying price

s Rs (in %) St+h Ct+h Πs

1 −1.93 98.07 3.09 −104.69
2 −0.69 99.31 3.72 −42.16
3 −0.71 99.29 3.71 −43.22
4 −0.73 99.27 3.70 −44.28
5 1.22 101.22 4.81 67.46
6 1.01 101.01 4.68 54.64
7 1.04 101.04 4.70 56.46
8 1.08 101.08 4.73 58.89
9 −1.61 98.39 3.25 −89.22

Using the price and the characteristics of the call option, we can show
that the implied volatility Σt is equal to 19.99% (rounded to 20%). We first
consider the case of the single risk factor. In Table 2.8, we show the values of
the P&L for the first nine scenarios. As an illustration, we provide the detailed
calculation for the first scenario. The asset return Rs is equal to −1.93%, thus
implying that the asset price St+h is equal to 100× (1− 1.93%) = 98.07. The
residual maturity τ is equal to 51/252 years. It follows that:

d1 =
1

20%×
√

51/252

(
ln

98.07

100
+ 5%× 51

252

)
+

1

2
× 20%×

√
51

252

= −0.0592

and:

d2 = −0.0592− 20%×
√

51

252
= −0.1491

We deduce that:

Ct+h = 98.07× e(5%−5%) 51
252 × Φ (−0.0592)− 100× e5%× 51

252 × Φ (−0.1491)

= 98.07× 1.00× 0.4764− 100× 1.01× 0.4407

= 3.093

62We assume that there is 252 trading days per year.
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The simulated P&L for the first historical scenario is then equal to:

Πs = 100× (3.093− 4.14) = −104.69

Based on the 250 historical scenarios, the value-at-risk is equal to $154.79.

Remark 16 In Figure 2.16, we illustrate that the option return RC is not a
new risk factor. We plot RS against RC for the 250 historical scenarios. The
points are on the curve of the Black-Scholes formula. The correlation between
the two returns is equal to 99.78%, which indicates that RS and RC are highly
dependent. However, this dependence is non-linear for large positive or nega-
tive asset returns. The figure shows also the leverage effect of the call option,
because RC is not of the same order of magnitude as RS. This illustrates the
non-linear characteristic of options. A linear position with a volatility equal
to 20% implies a daily VaR around 3%. In our example, the VaR is equal to
37.4% of the portfolio value, which corresponds to a linear exposure in a stock
with a volatility of 259%!

FIGURE 2.16: Relationship between the asset return RS and the option
return RC

Let us consider the case with two risk factors when the implied volatility
changes from t to t+ h. We assume that the absolute variation of the implied
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volatility is the right risk factor to model the future implied volatility. It
follows that:

Σt+h = Σt + ∆Σs

In Table 2.9, we indicate the value taken by Σt+h for the first nine scenarios.
This allows us to price the call option and deduce the P&L. For instance, the
call option becomes63 $2.32 instead of $3.09 for s = 1 because the implied
volatility has decreased. Finally, the value-at-risk is equal to $181.70 and is
larger than the previous one due to the second risk factor.

TABLE 2.9: Daily P&L of the long position on the call option when the risk
factors are the underlying price and the implied volatility

s Rs (in %) St+h ∆Σs (in %) Σt+h Ct+h Πs

1 −1.93 98.07 −4.42 15.58 2.32 −182.25
2 −0.69 99.31 −1.32 18.68 3.48 −65.61
3 −0.71 99.29 −3.04 16.96 3.17 −97.23
4 −0.73 99.27 2.88 22.88 4.21 6.87
5 1.22 101.22 −0.13 19.87 4.79 65.20
6 1.01 101.01 −0.08 19.92 4.67 53.24
7 1.04 101.04 1.29 21.29 4.93 79.03
8 1.08 101.08 2.93 22.93 5.24 110.21
9 −1.61 98.39 0.85 20.85 3.40 −74.21

The method of sensitivities The previous approach is called full pricing,
because it consists in re-pricing the option. In the method based on the Greek
coefficients, the idea is to approximate the change in the option price by Taylor
expansion. For instance, we define the delta approach as follows64:

Ct+h − Ct '∆t (St+h − St)

where ∆t is the option delta:

∆t =
∂ Ct (St,Σt, T )

∂ St

This approximation consists in replacing the non-linear exposure by a linear
exposure with respect to the underlying price. As noted by Duffie and Pan
(1997), this approach is not satisfactory because it is not accurate for large
changes in the underlying price that are the most useful scenarios for calcu-
lating the VaR. The delta approach may be implemented for the three VaR
methods. For instance, the Gaussian VaR of the call option is:

VaRα (w;h) = Φ−1 (α)× |∆t| × St × σ (RS,t+h)

63We have d1 = −0.0986, d2 = −0.1687, Φ (d1) = 0.4607, Φ (d2) = 0.4330 and Ct+h =
2.318.

64We write the call price as the function Ct (St,Σt, T ).
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If we consider the introductory example, we have:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)
' (wS + wC∆t) (St+h − St)
= (wS + wC∆t)StRS,t+h

With the delta approach, we aggregate the risk by netting the different delta
exposures65. In particular, the portfolio is delta neutral if the net exposure is
zero:

wS + wC∆t = 0⇔ wS = −wC∆t

With the delta approach, the VaR of delta neutral portfolios is then equal to
zero.

To overcome this drawback, we can use the second-order approximation
or the delta-gamma approach:

Ct+h − Ct '∆t (St+h − St) +
1

2
Γt (St+h − St)2

where Γt is the option gamma:

Γt =
∂2 Ct (St,Σt, T )

∂ S2
t

In Figure 2.17, we compare the two Taylor expansions with the re-pricing
method when h is equal to one trading day. We observe that the delta ap-
proach provides a bad approximation if the future price St+h is far from the
current price St. The inclusion of the gamma helps to correct the pricing error.
However, if the time period h is high, the two approximations may be inaccu-
rate even in the neighborhood de St (see the case h = 30 days in Figure 2.17).
It is therefore important to take into account the time or maturity effect:

Ct+h − Ct '∆t (St+h − St) +
1

2
Γt (St+h − St)2

+ Θth

where Θt = ∂t Ct (St,Σt, T ) is the option theta66.
The Taylor expansion can be generalized to a set of risk factors Ft =

(F1,t, . . . ,Fm,t):

Ct+h − Ct '
m∑
j=1

∂ Ct
∂ Fj,t

(Fj,t+h −Fj,t) +

1

2

m∑
j=1

m∑
k=1

∂2 Ct
∂ Fj,t ∂ Fk,t

(Fj,t+h −Fj,t) (Fk,t+h −Fk,t)

65A long (or short) position in the underlying asset is equivalent to ∆t = 1 (or ∆t = −1).
66An equivalent formula is Θt = −∂T Ct (St,Σt, T ) = −∂τ Ct (St,Σt, T ) because the

maturity T (or the time to maturity τ) is moving in the opposite way with respect to the
time t.
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FIGURE 2.17: Approximation of the option price with the Greek coefficients

The delta-gamma-theta approach consists in considering the underlying price
and the maturity as risk factors. If we add the implied volatility as a new risk
factor, we obtain:

Ct+h − Ct ' ∆t (St+h − St) +
1

2
Γt (St+h − St)2

+ Θth+

υt (Σt+h − Σt)

where υt = ∂Σt Ct (St,Σt, T ) is the option vega. Here, we have considered
that only the second derivative of Ct with respect to St is significant, but we
could also include the vanna or volga effect67.

In the case of the call option, the Black-Scholes sensitivities are equal to:

∆t = e(bt−rt)τΦ (d1)

Γt =
e(bt−rt)τφ (d1)

StΣt
√
τ

67The vanna coefficient corresponds to the cross-derivative of Ct with respect to St and
Σt whereas the volga effect is the second derivative of Ct with respect to Σt.
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Θt = −rtKe−rtτΦ (d2)− 1

2
√
τ
StΣte

(bt−rt)τφ (d1)−

(bt − rt)Ste(bt−rt)τΦ (d1)

υt = e(bt−rt)τSt
√
τφ (d1)

If we consider again Example 17, we obtain68 ∆t = 0.5632, Γt = 0.0434,
Θt = −11.2808 and υt = 17.8946. In Table 2.10, we have reported the ap-
proximated P&Ls for the first nine scenarios and the one-factor model. The
fourth column indicates the P&L obtained by the full pricing method, which
were already reported in Table 2.8. Π∆

s (w), Π∆+Γ
s (w) and Π∆+Γ+Θ

s (w) cor-
respond respectively to delta, delta-gamma, delta-gamma-theta approaches.
For example, we have Π∆

1 (w) = 100 × 0.5632 × (98.07− 100) = −108.69,
Π∆+Γ

1 (w) = −108.69 + 100 × 1
2 × 0.0434 × (98.07− 100)

2
= −100.61 and

Π∆+Γ+Θ
1 (w) = −100.61 − 11.2808 × 1/252 = −105.09. We notice that we

obtain a good approximation with the delta, but it is more accurate to com-
bine delta, gamma and theta sensibilities. Finally, the 99% VaRs for a one-day
holding period are $171.20 and $151.16 and $155.64. This is the delta-gamma-
theta approach which gives the closest result69. If the set of risk factors in-
cludes the implied volatility, we obtain the figures in Table 2.11. We notice
that the vega effect is very significant (fifth column). As an illustration, we
have Πυ

1 (w) = 100× 17.8946× (15.58%− 20%) = −79.09, implying that the
volatility risk explains 43.4% of the loss of $182.25 for the first scenario. Fi-
nally, the VaR is equal to $183.76 with the delta-gamma-theta-vega approach
whereas we found previously that it was equal to $181.70 with the full pricing
method.

TABLE 2.10: Calculation of the P&L based on the Greek sensitivities

s Rs (in %) St+h Πs Π∆
s Π∆+Γ

s Π∆+Γ+Θ
s

1 −1.93 98.07 −104.69 −108.69 −100.61 −105.09
2 −0.69 99.31 −42.16 −38.86 −37.83 42.30
3 −0.71 99.29 −43.22 −39.98 −38.89 −43.37
4 −0.73 99.27 −44.28 −41.11 −39.96 −44.43
5 1.22 101.22 67.46 68.71 71.93 67.46
6 1.01 101.01 54.64 56.88 59.09 54.61
7 1.04 101.04 56.46 58.57 60.91 56.44
8 1.08 101.08 58.89 60.82 63.35 58.87
9 −1.61 98.39 −89.22 −90.67 −85.05 −89.53

Remark 17 We do not present here the non-linear quadratic VaR, which

68We have d1 = 0.1590, Φ (d1) = 0.5632, φ (d1) = 0.3939, d2 = 0.0681 and Φ (d2) =
0.5272.

69We found previously that the VaR was equal to $154.79 with the full pricing method.
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TABLE 2.11: Calculation of the P&L using the vega coefficient

s St+h Σt+h Πs Πυ
s Π∆+υ

s Π∆+Γ+υ
s Π∆+Γ+Θ+υ

s

1 98.07 15.58 −182.25 −79.09 −187.78 −179.71 −184.19
2 99.31 18.68 −65.61 −23.62 −62.48 −61.45 −65.92
3 99.29 16.96 −97.23 −54.40 −94.38 −93.29 −97.77
4 99.27 22.88 6.87 51.54 10.43 11.58 7.10
5 101.22 19.87 65.20 −2.33 66.38 69.61 65.13
6 101.01 19.92 53.24 −1.43 55.45 57.66 53.18
7 101.04 21.29 79.03 23.08 81.65 84.00 79.52
8 101.08 22.93 110.21 52.43 113.25 115.78 111.30
9 98.39 20.85 −74.21 15.21 −75.46 −69.84 −74.32

consists in computing the VaR of option portfolios with the Cornish-Fisher
expansion (Zangari, 1996; Britten-Jones and Schaefer, 1999). It is called
‘quadratic’ because it uses the delta-gamma approximation and requires to
calculate the moments of the quadratic form (St+h − St)2. The treatment of
this approach is left as an exercise (Section 2.4.9 in page 135).

The hybrid method On the one hand, the full pricing method has the ad-
vantage to be accurate, but also the drawback to be time-consuming because
it performs a complete revaluation of the portfolio for each scenario. On the
other hand, the method based on the sensitivities is less accurate, but also
faster than the re-pricing approach. Indeed, the Greek coefficients are calcu-
lated once and for all, and their values do not depend on the scenario. The
hybrid method consists of combining the two approaches:

1. we first calculate the P&L for each (historical or simulated) scenario
with the method based on the sensitivities;

2. we then identify the worst scenarios;

3. we finally revalue these worst scenarios by using the full pricing method.

The underlying idea is to consider the faster approach to locate the value-
at-risk, and then to use the most accurate approach to calculate the right
value.

In Table 2.12, we consider the previous example with the implied volatility
as a risk factor. We have reported the worst scenarios corresponding to the
order statistic i : nS with i ≤ 10. In the case of the full pricing method, the five
worst scenarios are the 100th, 1st, 134th, 27th and 169th. This implies that the
hybrid method will give the right result if it is able to select the 100th, 1st and
134th scenarios to compute the value-at-risk which corresponds to the average
of the second and third order statistics. If we consider the ∆ − Γ − Θ − υ
approximation, we identify the same ten worst scenarios. It is perfectly normal,
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TABLE 2.12: The 10 worst scenarios identified by the hybrid method

i
Full pricing Greeks

∆− Γ−Θ− υ ∆−Θ ∆−Θ− υ
s Πs s Πs s Πs s Πs

1 100 −183.86 100 −186.15 182 −187.50 134 −202.08
2 1 −182.25 1 −184.19 169 −176.80 100 −198.22
3 134 −181.15 134 −183.34 27 −174.55 1 −192.26
4 27 −163.01 27 −164.26 134 −170.05 169 −184.32
5 169 −162.82 169 −164.02 69 −157.66 27 −184.04
6 194 −159.46 194 −160.93 108 −150.90 194 −175.36
7 49 −150.25 49 −151.43 194 −149.77 49 −165.41
8 245 −145.43 245 −146.57 49 −147.52 182 −164.96
9 182 −142.21 182 −142.06 186 −145.27 245 −153.37
10 79 −135.55 79 −136.52 100 −137.38 69 −150.68

as it is easy to price an European call option. It will not be the case with exotic
options, because the approximation may not be accurate. For instance, if we
consider our example with the ∆−Θ approximation, the five worst scenarios
becomes the 182th, 169st, 27th, 134th and 69th. If we revaluate these 5 worst
scenarios, the 99% value-at-risk is equal to:

VaR99% (w; one day) =
1

2
(163.01 + 162.82) = $162.92

which is a result far from the value of $180.70 found with the full pricing
method. With the 10 worst scenarios, we obtain:

VaR99% (w; one day) =
1

2
(181.15 + 163.01) = $172.08

Once again, we do not find the exact value, because the ∆−Θ approximation
fails to identify the 1st among the 10 worst scenarios. This problem vanishes
with the ∆ −Θ − υ approximation, even if it gives a ranking different than
this obtained with the full pricing method. In practice, the hybrid approach
is widespread and professionals generally use the identification method with
10 worst scenarios70.

2.2.4.3 Backtesting

When we consider a model to price a product, the valuation is known
as ‘mark-to-model’ and requires more attention than the mark-to-market ap-
proach. In this last case, the simulated P&L is the difference between the

70Its application is less frequent than in the past because computational times have dra-
matically decreased with the evolution of technology, in particular the development of par-
allel computing.
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mark-to-model value at time t+ 1 and the current mark-to-market value:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-market

At time t+ 1, the realized P&L is the difference between two mark-to-market
values:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-market

− Pt (w)︸ ︷︷ ︸
mark-to-market

For exotic options and OTC derivatives, we don’t have market prices and the
portfolio is valuated using the mark-to-model approach. This means that the
simulated P&L is the difference between two mark-to-model values:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

and the realized P&L is also the difference between two mark-to-model values:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

In the case of the mark-to-model valuation, we see the relevance of the pricing
model in terms of risk management. Indeed, if the pricing model is wrong,
the value-at-risk is wrong too and this cannot be detected by the backtesting
procedure, which has little signification. This is why the supervisory authority
places great importance on model risk.

2.2.4.4 Model risk

Model risk can not be summarized in a unique definition due to its com-
plexity. For instance, Derman (1996, 2001) considers six types of model risk
(inapplicability of modeling, incorrect model, incorrect solutions, badly ap-
proximated solution, bugs and unstable data). Rebonato (2001) defines model
risk as “the risk of a significant difference between the mark-to-model value of
an instrument, and the price at which the same instrument is revealed to have
traded in the market”. According to Morini (2001), these two approaches are
different. For Riccardo Rebonato, there is not a true value of an instrument
before it will be traded on the market. Model risk can therefore be measured
by selling the instrument in the market. For Emanuel Derman, an instrument
has an intrinsic true value, but it is unknown. The proposition of Rebonato is
certainly the right way to define model risk, but it does not help to measure
model risk from an ex-ante point of view. Moreover, this approach does not
distinguish between model risk and liquidity risk. The conception of Derman
is more adapted to manage model risk and calibrate the associated provi-
sions. This is the approach that has been adopted by banks and regulators.
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Nevertheless, the multifaceted nature of this approach induces very differ-
ent implementations across banks, because it appears as a catalogue with an
infinite number of rules.

We consider a classification with four main types of model risk:

1. The operational risk
This is the risk associated to the implementation of the pricer. It con-
cerns programming mistakes or bugs, but also mathematical errors in
closed-form formulas, approximations or numerical methods. A typical
example is the use of a numerical scheme for solving a partial differential
equation. The accuracy of the option price and the Greeks coefficients
will depend on the specification of the numerical algorithm (explicit,
implicit or mixed schemes) and the discretization parameters (time and
space steps). Another example is the choice of the Monte Carlo method
and the number of simulations.

2. The parameter risk
This is the risk associated to the input parameters, in particular those
which are difficult to estimate. A wrong value of one parameter can lead
to a mis-pricing, even though the model is right and well implemented. In
this context, the question of available and reliable data is a key issue. It is
particular true when the parameters are unobservable and are based on
an expert’s opinion. A typical example concerns the value of correlations
in multi-asset options. Even if there is no problem with data, some
parameters are indirectly related to market data via a calibration set.
In this case, they may change with the specification of the calibration set.
A typical example is the pricing of exotic interest rate options, which are
based on parameters calibrated from prices of plain vanilla instruments
(caplets and swaptions). The analysis of parameter risk consists then of
measuring the impact of parameter changes on the price and the hedging
portfolio of the exotic option.

3. The risk of mis-specification
This is the risk associated to the mathematical model, because it may
not include all the risk factors, the dynamics of the risk factors is not
adequate or the dependence between them is not well defined. It is gen-
erally easy to highlight this risk, because various models calibrated with
the same set of instruments can produce different prices for the same
exotic option. The big issue is to define what is the least bad model. For
example, in the case of equity options, we have the choice between many
models: Black-Scholes, local volatility, Heston model, other stochastic
volatility models, jump diffusion, etc. In practice, the frontier between
the risk of parameters and the risk of mis-specification may be unclear
as shown by the seminal work of uncertainty on pricing and hedging by
Avellaneda et al. (1995). Moreover, a model which appears to be good
for pricing may not be well adapted for risk management.
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4. The hedging risk
This is the risk associated to the trading management of the option
portfolio. The sales margin corresponds to the difference between the
transaction price and the mark-to-model price. The sales margin is cal-
culated at the inception date of the transaction. To freeze the margin,
we have to hedge the option. The mark-to-model value is then trans-
ferred to the option trader and represents the hedging cost. We face
here the risk that the realized hedging cost is larger than the mark-to-
model price. A typical example is a put option, which has a negative
delta. The hedging portfolio corresponds then to a short selling on the
underlying asset. Sometimes, this short position may be difficult to im-
plement (e.g. a ban on short selling) or may be very costly (e.g. due to
a change in the bank funding condition). Some events may also gener-
ate a rebalancing risk. The most famous example is certainly the hedge
funds crisis in October 2008, which has imposed redemption restrictions
or gates. This caused difficulties to traders, who managed call options
on hedge funds and were unable to reduce their deltas at this time. The
hedging risk does not only concerns the feasibility of the hedging imple-
mentation, but also its adequacy with the model. As an illustration, we
suppose that we use a stochastic volatility model for an option, which is
sensitive to the vanna coefficient. The risk manager can then decide to
use this model for measuring the value-at-risk, but the trader can also
prefer to implement a Black-Scholes hedging portfolio71. This is not a
problem that the risk manager uses a different model than the trader if
the model risk only includes the first three categories. However, it will
be a problem if it also concerns hedging risk.

Model risk justifies that model validation is an integral part of the risk
management process for exotic options. The tasks of a model validation team
are multiple and concerns reviewing the programming code, checking mathe-
matical formulas and numerical approximations, validating market data, test-
ing the calibration stability, challenging the pricer with alternative models,
proposing provision buffers, etc. These teams generally operate at the earli-
est stages of the pricer development, whereas the risk manager is involved to
follow the product on a daily basis.

Remark 18 It is a mistake to think that model risk is an operational risk.
Model risk is intrinsically a market risk. Indeed, it exists because exotic op-
tions are difficult to price and hedge, implying that commercial risk is high.
This explains that sales margin are larger than for vanilla options and implic-
itly include model risk, which is therefore inherent to the business of exotic
derivatives.

71There may be many reasons for implementing more simple hedging portfolios: the trader
may be more confident in the robustness, there is no market instrument to replicate the
vanna position, etc.
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2.3 Risk allocation
Measuring the risk of a portfolio is a first step to manage it. In particular,

a risk measure is a single number that is not very helpful for understanding
the sources of the portfolio risk. To go further, we must define precisely the
notion of risk contribution in order to propose risk allocation principles. Until
now, we have used the value-at-risk without defining more precisely what a
risk measure is. This allowed to manipulate risk measures from a practical
point of view. However, we need now to focus on the theory if we want to
understand the principles of capital budgeting.

2.3.1 Properties of a risk measure

Let R (w) be the risk measure of portfolio w. In this section, we define
the different properties that should satisfy risk measure R (w) in order to be
acceptable in terms of capital allocation.

2.3.1.1 Coherency and convexity of risk measures

Following Artzner et al. (1999), R is said to be ‘coherent ’ if it satisfies the
following properties:

1. Subadditivity
R (w1 + w2) ≤ R (w1) +R (w2)

The risk of two portfolios should be less than adding the risk of the two
separate portfolios.

2. Homogeneity
R (λw) = λR (w) if λ ≥ 0

Leveraging or deleveraging of the portfolio increases or decreases the
risk measure in the same magnitude.

3. Monotonicity
if w1 ≺ w2, then R (w1) ≥ R (w2)

If portfolio w2 has a better return than portfolio w1 under all scenarios,
risk measure R (w1) should be higher than risk measure R (w2).

4. Translation invariance

if m ∈ R, then R (w +m) = R (w)−m

Adding a cash position of amount m to the portfolio reduces the risk by
m. This implies that we can hedge the risk of the portfolio by considering
a capital that is equal to the risk measure:

R (w +R (w)) = R (w)−R (w) = 0
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The definition of coherent risk measures led to a considerable interest in the
quantitative management of risk. Thus, Föllmer and Schied (2002) propose to
replace the homogeneity and subadditivity conditions by a weaker condition
called the convexity property:

R (λw1 + (1− λ)w2) ≤ λR (w1) + (1− λ)R (w2)

This condition means that diversification should not increase the risk.
We have seen that the loss of the portfolio is L (w) = −Pt (w)Rt+h (w)

where Pt (w) and Rt+h (w) are the current value and the future return of the
portfolio. Without loss of generality72, we assume that Pt (w) is equal to 1.
We consider then different risk measures:

• Volatility of the loss

R (w) = σ (L (w)) = σ (w)

The volatility of the loss is the standard deviation of the portfolio’s loss.

• Standard deviation-based risk measure

R (w) = SDc (w) = E [L (w)] + c · σ (L (w)) = −µ (w) + c · σ (w)

To obtain this measure, we scale the volatility by factor c > 0 and
subtract the expected return of the portfolio.

• Value-at-risk

R (w) = VaRα (w) = inf {` : Pr {L (w) ≤ `} ≥ α}

The value-at-risk is the α-quantile of the loss distribution F and we note
it F−1 (α).

• Expected shortfall

R (w) = ESα (w) =
1

1− α

∫ 1

α

VaRu (w) du

The expected shortfall is the average of the VaRs at level α and higher
(Acerbi and Tasche, 2002). We note that it is also equal to the expected
loss given that the loss is beyond the value-at-risk:

ESα (w) = E [L (w) | L (w) ≥ VaRα (w)]

72The homogeneity property implies that:

R
(

w

Pt (w)

)
=
R (w)

Pt (w)

We can therefore calculate the risk measure using the absolute loss (expressed in $) or the
relative loss (expressed in %). The two approaches are perfectly equivalent.
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We can show that the standard deviation-based risk measure and the ex-
pected shortfall satisfy the previous coherency and convexity conditions. For
the value-at-risk, the subadditivity property does not hold in general. This is
a problem because the portfolio’s risk may have be meaningful in this case.
More curiously, the volatility is not a coherent risk measure because it does
not verify the translation invariance axiom.

Example 19 We consider a defaultable $100 zero-coupon bond, whose the
default probability is equal to 200 bps. We assume that the recovery rate R is
a binary random variable with Pr {R = 0.25} = Pr {R = 0.75} = 50%.

Let L be the loss of the zero-coupon bond. We have F (0) = Pr {L ≤ 0} =
98%, F (25) = Pr {Li ≤ 25} = 99% and F (75) = Pr {Li ≤ 75} = 100%. We
deduce that the 99% value-at-risk is equal to $25. We have then:

ES99% (Li) = E [Li | Li ≥ 25]

=
25 + 75

2
= $50

We assume now that the portfolio contains two zero-coupon bonds, whose
default times are independent. The probability density function of (L1, L2) is
given below:

L1 = 0 L1 = 25 L1 = 75

L2 = 0 96.04% 0.98% 0.98% 98.00%
L2 = 25 0.98% 0.01% 0.01% 1.00%
L2 = 75 0.98% 0.01% 0.01% 1.00%

98.00% 1.00% 1.00%

We deduce that the probability distribution function of L = L1 + L2 is:

` 0 25 50 75 100 150

Pr {L ≤ `} 96.04% 1.96% 0.01% 1.96% 0.02% 0.01%
Pr {L = `} 96.04% 98% 98.01% 99.97% 99.99% 100%

It follows that VaR99% (L) = 75 and:

ES99% (L) =
75× 1.96% + 100× 0.02% + 150 ∗ 0.01%

1.96% + 0.02% + 0.01%
= $75.63

For this example, the value-at-risk does not satisfy the subadditivity property,
which is not the case of the expected shortfall73.

73We have VaR99% (L1) + VaR99% (L2) = 50, VaR99% (L1 + L2) > VaR99% (L1) +
VaR99% (L2), ES99% (L1) + ES99% (L2) = 100 and ES99% (L1 + L2) < ES99% (L1) +
ES99% (L2).
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For this reason, the value-at-risk has been frequently criticized by aca-
demics. They also pointed out that it does not capture the tail risk of the
portfolio. This led the Basel Committee to replace the 99% value-at-risk by
the 97.5% expected shortfall for the internal model-based approach in Basel
IV (BCBS, 2013b). In practice, it is not sure that it will improve significantly
the predictive power of the risk measure. As an illustration, we assume that
the portfolio loss is normally distributed: L (w) ∼ N

(
µ (L) , σ2 (L)

)
. The ex-

pression of the value-at-risk is:

VaRα (w) = µ (L) + Φ−1 (α)σ (L)

whereas the expected shortfall is equal to:

ESα (w) =
1

1− α

∫ ∞
µ(L)+Φ−1(α)σ(L)

x

σ (L)
√

2π
exp

(
−1

2

(
x− µ (L)

σ (L)

)2
)

dx

With the variable change t = σ (L)
−1

(x− µ (L)), we obtain:

ESα (w) =
1

1− α

∫ ∞
Φ−1(α)

(µ (L) + σ (L) t)
1√
2π

exp

(
−1

2
t2
)

dt

=
µ (L)

1− α
[Φ (t)]

∞
Φ−1(α) +

σ (L)

(1− α)
√

2π

∫ ∞
Φ−1(α)

t exp

(
−1

2
t2
)

dt

= µ (L) +
σ (L)

(1− α)
√

2π

[
− exp

(
−1

2
t2
)]∞

Φ−1(α)

= µ (L) +
σ (L)

(1− α)
√

2π
exp

(
−1

2

[
Φ−1 (α)

]2)
The expected shortfall of the portfolio w is then:

ESα (w) = µ (L) +
φ
(
Φ−1 (α)

)
(1− α)

σ (L)

When the portfolio loss is Gaussian, the value-at-risk and the expected
shortfall are both a standard deviation-based risk measure. They coin-
cide when the the scaling parameters cVaR = Φ−1 (αVaR) and cES =
φ
(
Φ−1 (αES)

)
/ (1− αES) are equal. In Table 2.13, we report the values taken

by cVaR and cES. We notice that the 97.5% expected shortfall gives the same
risk measure than a 99% value-at-risk in the Gaussian case.

TABLE 2.13: Scaling factors cVaR and cES

α (in %) 95.0 96.0 97.0 97.5 98.0 98.5 99.0 99.5

cVaR 1.64 1.75 1.88 1.96 2.05 2.17 2.33 2.58
cES 2.06 2.15 2.27 2.34 2.42 2.52 2.67 2.89
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2.3.1.2 Euler allocation principle

According to Litterman (1996), risk allocation consists in decomposing
the risk portfolio into a sum of risk contributions by sub-portfolios (assets,
trading desks, etc.). The concept of risk contribution is key in identifying
concentrations and understanding the risk profile of the portfolio, and there
are different methods for defining them. As illustrated by Denault (2001), some
methods are more pertinent than others and the Euler principle is certainly
the most used and accepted one.

We decompose the P&L as follows:

Π =

n∑
i=1

Πi

where Πi is the P&L of the ith sub-portfolio. We note R (Π) the risk measure
associated with the P&L74. Let us consider the risk-adjusted performance
measure (RAPM) defined by75:

RAPM (Π) =
E [Π]

R (Π)

Tasche (2008) considers the portfolio-related RAPM of the ith sub-portfolio
defined by:

RAPM (Πi | Π) =
E [Πi]

R (Πi | Π)

Based on the notion of RAPM, Tasche (2008) states two properties of risk
contributions that are desirable from an economic point of view:

1. Risk contributions R (Πi | Π) to portfolio-wide risk R (Π) satisfy the full
allocation property if:

n∑
i=1

R (Πi | Π) = R (Π) (2.8)

2. Risk contributions R (Πi | Π) are RAPM compatible if there are some
εi > 0 such that76:

RAPM (Πi | Π) > RAPM (Π)⇒ RAPM (Π + hΠi) > RAPM (Π)
(2.9)

for all 0 < h < εi.

74We remind that R (Π) = R (−L).
75This concept is close to the RAROC measure introduced by Banker Trust (see page 2).
76This property means that assets with a better risk-adjusted performance than the port-

folio continue to have a better RAPM if their allocation increases in a small proportion.
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Tasche (2008) shows therefore that if there are risk contributions that are
RAPM compatible in the sense of the two previous properties (2.8) and (2.9),
then R (Πi | Π) is uniquely determined as:

R (Πi | Π) =
d

dh
R (Π + hΠi)

∣∣∣∣
h=0

(2.10)

and the risk measure is homogeneous of degree 1. In the case of a subadditive
risk measure, one can also show that:

R (Πi | Π) ≤ R (Πi) (2.11)

This means that the risk contribution of asset i is always smaller than its
stand-alone risk measure. The difference is related to the risk diversification.

Let us return to risk measure R (w) defined in terms of weights. The previ-
ous framework implies that the risk contribution of sub-portfolio i is uniquely
defined as:

RCi = wi
∂R (w)

∂ wi
(2.12)

and the risk measure satisfies the Euler decomposition:

R (w) =

n∑
i=1

wi
∂R (w)

∂ wi
=

n∑
i=1

RCi (2.13)

This relationship is also called the Euler allocation principle.

Remark 19 We can always define the risk contributions of a risk measure by
using Equation (2.12). However, this does not mean that it satisfies the Euler
decomposition (2.13).

Remark 20 Kalkbrener (2005) develops an axiomatic approach to risk con-
tributions. In particular, he shows that the Euler allocation principle is the
only risk allocation method compatible with diversification principle (2.11) if
the risk measure is subadditive.

If we assume that the portfolio return R (w) is a linear function of the
weights w, the expression of the standard deviation-based risk measure be-
comes:

R (w) = −µ (w) + c× σ (w)

= −w>µ+ c
√
w>Σw

where µ and Σ are the mean vector and the covariance matrix of sub-portfolios.
It follows that the vector of marginal risks is:

∂R (w)

∂ w
= −µ+ c

1

2

(
w>Σw

)−1
(2Σw)

= −µ+ c
Σw√
w>Σw
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The risk contribution of the ith sub-portfolio is then:

RCi = wi ×
(
−µi + c

(Σw)i√
w>Σw

)
We verify that the standard deviation-based risk measure satisfies the full
allocation property:

n∑
i=1

RCi =

n∑
i=1

wi ×
(
−µi + c

(Σw)i√
w>Σw

)
= w>

(
−µ+ c

Σw√
w>Σw

)
= −w>µ+ c

√
w>Σw

= R (w)

Because Gaussian value-at-risk and expected shortfall are two special cases
of the standard deviation-based risk measure, we conclude that they also sat-
isfy the Euler allocation principle. In the case of the value-at-risk, the risk
contribution becomes:

RCi = wi ×
(
−µi + Φ−1 (α)

(Σw)i√
w>Σw

)
(2.14)

whereas in the case of the expected shortfall, it is:

RCi = wi ×

(
−µi +

φ
(
Φ−1 (α)

)
(1− α)

×
(Σw)i√
w>Σw

)
(2.15)

Remark 21 Even if the risk measure is coherent and convex, it does not
necessarily satisfy the Euler allocation principle. The most famous exam-
ple is the variance of the portfolio return. We have var (w) = w>Σw and
∂w var (w) = 2Σw. It follows that

∑n
i=1 wi×∂wi var (w) =

∑n
i=1 wi×(2Σw)i =

2w>Σw = 2 var (w) > var (w). In the case of the variance, the sum of the risk
contributions is then always larger than the risk measure itself.

Example 20 We consider the Apple/Coca-Cola portfolio that have been used
for calculating the Gaussian VaR in page 76. We remind that the nominal
exposures were $1 093.3 (Apple) and $842.8 (Coca-Cola), the estimated stan-
dard deviation of daily returns was equal to 1.3611% for Apple and 0.9468% for
Coca-Cola and the cross-correlation of stock returns was equal to 12.0787%.

In the two-asset case, the expression of the value-at-risk or the expected
shortfall is:

R (w) = −w1µ1 − w2µ2 + c
√
w2

1σ
2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2
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It follows that the marginal risk of the first asset is:

MR1 = −µ1 + c
w1σ

2
1 + w2ρσ1σ2√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

We then deduce that the risk contribution of the first asset is:

RC1 = −w1µ1 + c
w2

1σ
2
1 + w1w2ρσ1σ2√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

By using the numerical values77 of Example 20, we obtain the results given in
Tables 2.14 and 2.14. We verify that the sum of risk contributions is equal to
the risk measure. We notice that the stock Apple explains 75.14% of the risk
whereas it represents 56.47% of the allocation.

TABLE 2.14: Risk decomposition of the 99% Gaussian value-at-risk

Asset wi MRi RCi RC?i
Apple 1093.3 2.83% 30.96 75.14%

Coca-Cola 842.8 1.22% 10.25 24.86%

R (w) 41.21

TABLE 2.15: Risk decomposition of the 99% Gaussian expected shortfall

Asset wi MRi RCi RC?i
Apple 1093.3 3.24% 35.47 75.14%

Coca-Cola 842.8 1.39% 11.74 24.86%

R (w) 47.21

2.3.2 Application to non-normal risk measures

2.3.2.1 Main results

In the previous section, we provided formulas for when asset returns are
normally distributed. However, the previous expressions can be extended in
the general case. For the value-at-risk, Gouriéroux et al. (2000) show that the
risk contribution is equal to78:

RCi = R (Πi | Π)

= −E [Πi | Π = −VaRα (Π)]

= E [Li | L (w) = VaRα (L)] (2.16)

77We set µ1 = µ2 = 0.
78See also Hallerbach (2003).
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Formula (2.16) is more general than Equation (2.14) obtained in the Gaussian
case. Indeed, we can retrieve the latter if we assume that the returns are
Gaussian. We recall that the portfolio return is R (w) =

∑n
i=1 wiRi = w>R.

The portfolio loss is defined by L (w) = −R (w). We deduce that:

RCi = E [−wiRi | −R (w) = VaRα (w)]

= −wiE [Ri | R (w) = −VaRα (w)]

Because R (w) is a linear combination of R, the random vector (R,R (w)) is
Gaussian and we have:(

R
R (w)

)
∼ N

((
µ

w>µ

)
,

(
Σ Σw
w>Σ w>Σw

))
We know that VaRα (w) = −w>µ+ Φ−1 (α)

√
w>Σw. It follows that79:

E [R|R (w) = −VaRα (w)] = E
[
R | R (w) = w>µ− Φ−1 (α)

√
w>Σw

]
= µ+ Σw

(
w>Σw

)−1 ×(
w>µ− Φ−1 (α)

√
w>Σw − w>µ

)
= µ− Φ−1 (α) Σw

√
w>Σw

(w>Σw)
−1

= µ− Φ−1 (α)
Σw√
w>Σw

We obtain finally the same expression as Equation (2.14):

RCi = −wi
(
µ− Φ−1 (α)

Σw√
w>Σw

)
i

= −wiµi + Φ−1 (α)
wi · (Σw)i√
w>Σw

In the same way, Tasche (2002) shows that the general expression of the
risk contributions for the expected shortfall is:

RCi = R (Πi | Π)

= −E [Πi | Π ≤ −VaRα (Π)]

= E [Li | L (w) ≥ VaRα (L)] (2.17)

Using Bayes’ theorem, it follows that:

RCi =
E [Li · 1 {L (w) ≥ VaRα (L)}]

1− α
79We use the formula of the conditional expectation presented in Appendix A.2.2.3 in

page 456.
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If we apply the previous formula to the Gaussian case, we obtain:

RCi = − wi
1− α

E [Ri · 1 {R (w) ≤ −VaRα (L)}]

After some tedious computations, we retrieve the same expression as found
previously80.

2.3.2.2 Calculating risk contributions with historical and simu-
lated scenarios

The case of value-at-risk When using historical or simulated scenarios,
the VaR is calculated as follows:

VaRα (w;h) = −Π((1−α)nS :nS) = L(αnS :nS)

Let RΠ (s) be the rank of the P&L associated to the sth observation meaning
that:

RΠ (s) =

nS∑
j=1

1 {Πj ≤ Πs}

We deduce that:
Πs = Π(RΠ(s):nS)

Formula (2.16) is then equivalent to decompose Π((1−α)nS :nS) into individual
P&Ls. We have Πs =

∑n
i=1 Πi,s where Πi,s is the P&L of the ith sub-portfolio

for the sth scenario. It follows that:

VaRα (w;h) = −Π((1−α)nS :nS)

= −ΠR−1
Π ((1−α)nS)

= −
n∑
i=1

Πi,R−1
Π ((1−α)nS)

where R−1
Π is the inverse function of the rank. We finally deduce that:

RCi = −Πi,R−1
Π ((1−α)nS)

= Li,R−1
Π ((1−α)nS)

The risk contribution of the ith sub-portfolio is the loss of the ith sub-portfolio
corresponding to the scenario R−1

Π ((1− α)nS). If (1− α)nS is not an integer,
we have:

RCi = −
(

Πi,R−1
Π (q) + ((1− α)nS − q)

(
Πi,R−1

Π (q+1) −Πi,R−1
Π (q)

))
where q = qᾱ (nS) is the integer part of (1− α)nS .

80The derivation of the formula is left as an exercise (Section 2.4.9 in page 135).
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Let us consider Example 13 in page 68. We have found that the histori-
cal value-at-risk is $47.39. It corresponds to the linear interpolation between
the second and third largest loss. Using results in Table 2.4, we notice that
R−1

Π (1) = 236, R−1
Π (2) = 69, R−1

Π (3) = 85, R−1
Π (4) = 23 and R−1

Π (5) = 242.
We deduce that the second and third order statistics correspond to the 69th

and 85th historical scenarios. The risk decomposition is reported in Table 2.16.
Therefore, we calculate the risk contribution of the Apple stock as follows:

RCi = −1

2
(Π1,69 + Π1,85)

= −1

2
(10× (105.16− 109.33) + 10× (104.72− 109.33))

= $43.9

For the Coca-Cola stock, we obtain:

RCi = −1

2
(Π2,69 + Π2,85)

= −1

2
(20× (41.65− 42.14) + 20× (42.28− 42.14))

= $3.5

If we compare these results with those obtained with the Gaussian VaR, we ob-
serve that the risk decomposition is more concentrated for the historical VaR.
Indeed, the exposure on Apple represents 96.68% whereas it was previously
equal to 75.14%. The problem is that the estimator of the risk contribution
only uses two observations, implying that its variance is very high.

TABLE 2.16: Risk decomposition of the 99% historical value-at-risk

Asset wi MRi RCi RC?i
Apple 56.47% 77.77 43.92 92.68%

Coca-Cola 43.53% 7.97 3.47 7.32%

R (w) 47.39

We can consider three techniques to improve the efficiency of the estimator
RCi = Li,R−1

Π (nS(1−a)). The first approach is to use a regularization method
(Scaillet, 2004). The idea is to estimate the value-at-risk by weighting the
order statistics:

VaRα (w;h) = −
nS∑
s=1

$α (s;nS) Π(s:nS)

= −
nS∑
s=1

$α (s;nS) ΠR−1
Π (s)

where $α (s;nS) is a weight function dependent on the confidence level α.
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The expression of the risk contribution then becomes:

RCi = −
nS∑
s=1

$α (s;nS) Πi,R−1
Π (s)

Of course, this naive method can be improved by using more sophisticated
approaches such as importance sampling (Glasserman, 2005).

In the second approach, asset returns are assumed to be elliptically dis-
tributed. In this case, Carroll et al. (2001) shows that81:

RCi = E [Li] +
cov (L,Li)

σ2 (L)
(VaRα (L)− E [L])

Estimating the risk contributions with the scenarios is then straightforward.
It suffices to apply Formula (2.16) by replacing the statistical moments by
their sample statistics:

RCi = L̄i +

∑nS
s=1

(
Ls − L̄

) (
Li,s − L̄i

)∑nS
s=1

(
Ls − L̄

)2 (
VaRα (L)− L̄

)
where L̄i = n−1

S

∑nS
s=1 Li,s and L̄ = n−1

S

∑nS
s=1 Ls. Result (2.16) can be viewed

as the estimation of the conditional expectation E [Li|L = VaRα (L)] in a
linear regression framework:

Li = βL+ εi

Because the least squared estimator is β̂ = cov (L,Li) /σ
2 (L), we deduce that:

E [Li|L = VaRα (L)] = β̂VaRα (L) + E [εi]

= β̂VaRα (L) +
(
E [Li]− β̂E [L]

)
= E [Li] + β̂ (VaRα (L)− E [L])

Epperlein and Smillie (2006) extend Formula (2.16) in the case of non-
elliptical distributions. If we consider the generalized conditional expectation
E [Li|L = x] = f (x) where the function f is unknown, the estimator is given
by the kernel regression82:

f̂ (x) =

∑nS
s=1K (Ls − x)Li,s∑nS
s=1K (Ls − x)

81We verify that the sum of the risk contributions is equal to the value-at-risk:
n∑
i=1

RCi =
n∑
i=1

E [Li] + (VaRα (L)− E [L])

n∑
i=1

cov (L,Li)

σ2 (L)

= E [L] + (VaRα (L)− E [L])

= VaRα (L)

82f̂ (x) is called the Nadaraya-Watson estimator.
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where K (u) is the kernel function. We deduce that:

RCi = f̂ (VaRα (L))

Epperlein and Smillie (2006) note however that this risk decomposition does
not satisfy the Euler principle. This is why they propose the following correc-
tion:

RCi =
VaRα (L)∑n
i=1RCi

f̂ (VaRα (L))

= VaRα (L)

∑nS
s=1K (Ls −VaRα (L))Li,s∑n

i=1

∑nS
s=1K (Ls −VaRα (L))Li,s

= VaRα (L)

∑nS
s=1K (Ls −VaRα (L))Li,s∑nS
s=1K (Ls −VaRα (L))Ls

In Table 2.17, we have reported the risk contributions of the 99% value-
at-risk for Apple and Coca-Cola stocks. The case G corresponds to the Gaus-
sian value-at-risk whereas all the other cases correspond to the historical
value-at-risk. For the case R1, the regularization weights are $99% (2; 250) =
$99% (3; 250) = 1

2 and $99% (s; 250) = 0 when s 6= 2 or s 6= 3. It corre-
sponds to the classical interpolation method between the second and third
order statistics. For the case R2, we have $99% (s; 250) = 1

4 when s ≤ 4 and
$99% (s; 250) = 0 when s > 4. The value-at-risk is therefore estimated by
averaging the first four order statistics. The cases E and K correspond to the
methods based on the elliptical and kernel approaches. For these two cases, we
obtain a risk decomposition, which is closer to this obtained with the Gaussian
method. This is quite logical as the Gaussian distribution is a special case of
elliptical distributions and the kernel function is also Gaussian.

TABLE 2.17: Risk contributions calculated with regularization techniques

Asset G R1 R2 E K

Apple 30.97 43.92 52.68 35.35 39.21
Coca-Cola 10.25 3.47 2.29 12.03 8.17

R (w) 41.21 47.39 54.96 47.39 47.39

Example 21 Let L = L1 + L2 be the portfolio loss, where Li (i = 1, 2) is
defined as follows:

Li = wi (µi + σiTi)

and Ti is a Student t distribution with the number of degrees of freedom νi.
The dependence function between the losses (L1, L2) is given by the Clayton
copula:

C (u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
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For the numerical illustration, we consider the following values: w1 = 100,
µ1 = 10%, σ1 = 20%, ν1 = 6, w2 = 200, µ2 = 10%, σ2 = 25%, ν2 = 4 and
θ = 2. The confidence level α of the value-at-risk is set to 90%.

In Figure 2.18, we compare the different statistical estimators of the risk
contribution RC1 when we use nS = 5 000 simulations. Concerning the reg-
ularization method, we consider the following weight function applied to the
order statistics of losses83:

$L
α (s;nS) =

1

2hnS + 1
× 1

{
|s− qα (nS)|

nS
≤ h

}

It corresponds to a uniform kernel on the range [qα (nS)− hnS , qα + qα (nS)nS ].
In the first panel, we report the probability density function of RC1 when h
is equal to 0% and 2.5%. The case h = 0% is the estimator based on only one
observation. We verify that the variance of this estimator is larger for h = 0%
than for h = 2.5%. However, we notice that this last estimator is a little bi-
ased, because we estimate the quantile 90% by averaging the order statistics
corresponding to the range [87.5%, 92.5%]. In the second panel, we compare
the weighting method with the elliptical and kernel approaches. These two
estimators have a smaller variance, but a larger bias because they assume
that the loss distribution is elliptical or may be estimated using a Gaussian
kernel. Finally, the third panel shows the probability density function of RC1

estimated with the Gaussian value-at-risk.

The case of expected shortfall The expected shortfall is estimated as
follows84:

ESα (L) = − 1

qᾱ (nS)

nS∑
s=1

1 {Πs ≤ VaRα (L)} ×Πs

=
1

qᾱ (nS)

nS∑
s=1

1 {Ls ≥ VaRα (L)} × Ls

83This is equivalent to use this weight function applied to the order statistics of P&Ls:

$α (s;nS) =
1

2hnS + 1
× 1

{
|s− qᾱ (nS)|

nS
≤ h

}

84Because we have:
nS∑
s=1

1 {Πs ≤ VaRα (L)} = qᾱ (nS)
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FIGURE 2.18: Probability density function of the different risk contribution
estimators

It corresponds to the average of the losses larger or equal than the value-at-
risk. It follows that:

ESα (L) = − 1

qᾱ (nS)

qᾱ(nS)∑
s=1

Π(s:nS)

= − 1

qᾱ (nS)

qᾱ(nS)∑
s=1

ΠR−1
Π (s)

= − 1

qᾱ (nS)

qᾱ(nS)∑
s=1

n∑
i=1

Πi,R−1
Π (s)

We deduce that:

RCi = − 1

qᾱ (nS)

qᾱ(nS)∑
s=1

Πi,R−1
Π (s)

=
1

qᾱ (nS)

qᾱ(nS)∑
s=1

Li,R−1
Π (s)
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In the Apple/Coca-Cola example, we remind that the 99% daily value-
at-risk is equal to $47.39. The corresponding expected shortfall is then the
average of the two largest losses:

ESα (w; one day) =
84.34 + 51.46

2
= $67.90

For the risk contributions, we obtain85:

RC1 =
87.39 + 41.69

2
= $64.54

and:
RC2 =

−3.05 + 9.77

2
= $3.36

The corresponding risk decomposition is given in Tables 2.18 and 2.19 for
α = 99% and α = 97.5%. With the new rules of Basel IV, the capital is higher
for this example.

TABLE 2.18: Risk decomposition of the 99% historical expected shortfall

Asset wi MRi RCi RC?i
Apple 56.47% 114.29 64.54 95.05%

Coca-Cola 43.53% 7.72 3.36 4.95%

R (w) 67.90

TABLE 2.19: Risk decomposition of the 97.5% historical expected shortfall

Asset wi MRi RCi RC?i
Apple 56.47% 78.48 44.32 91.31%

Coca-Cola 43.53% 9.69 4.22 8.69%

R (w) 48.53

In Figure 2.19, we report the probability density function of the RC1 es-
timator in the case of Example 21. We consider the 99% value-at-risk and
the 97.5% expected shortfall with nS = 5 000 simulated scenarios. For the
VaR risk measure, the risk contribution is estimated using respectively only
one single observation and a weighting function corresponding a uniform win-
dow86. We notice that the estimator has a smaller variance with the expected
shortfall risk measure.

85Because we have:
Π(1:250) = −87.39 + 3.05 = −84.34

and:
Π(2:250) = −41.69− 9.77 = −51.46

86We set h = 0.5% meaning that the risk contribution is estimated with 51 observations
for the VaR with a 99% confidence level.
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FIGURE 2.19: Probability density function of the RC1 estimator for the
VaR 99% and ES 99.5%

2.4 Exercises

2.4.1 Calculating regulatory capital with the standardized
measurement method

1. We consider the following portfolio of stocks:

Stock 3M Exxon IBM Pfizer AT&T Cisco Oracle
Li 100 100 10 50 60 90
Si 50 80

where Li and Si indicate the long and short exposures on stock i ex-
pressed in $ mn.

(a) Calculate the capital charge for the specific risk.
(b) Calculate the capital charge for the general market risk.
(c) How can the investor hedge the market risk of his portfolio by

using S&P 500 futures contracts? What is the corresponding capital
charge? Verify that the investor minimizes the total capital charge
in this case.
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2. We consider a net exposure Nw on an equity portfolio w. We note σ (w)
the annualized volatility of the portfolio return.

(a) Calculate the required capital under the standardized measurement
method.

(b) Calculate the required capital under the internal model method if
we assume that the bank uses a Gaussian value-at-risk87.

(c) Deduce an upper bound σ (w) ≤ σ+ under which the required
capital under SMM is higher than the required capital under IMA.

(d) Comment on these results.

3. We consider the portfolio with the following long and short positions
expressed in $ mn:

Asset EUR JPY CAD Gold Sugar Corn Cocoa
Li 100 50 50 50 60 90
Si 100 100 50 80 110

(a) How do you explain that some assets present both long and short
positions?

(b) Calculate the required capital under the simplified approach.

2.4.2 Covariance matrix

We consider a universe of there stocks A, B and C.

1. The covariance matrix of stock returns is:

Σ =

 4%
3% 5%
2% −1% 6%


(a) Calculate the volatility of stock returns.

(b) Deduce the correlation matrix.

2. We assume that the volatilities are 10%, 20% and 30%. whereas the
correlation matrix is equal to:

ρ =

 100%
50% 100%
25% 0% 100%


(a) Write the covariance matrix.

(b) Calculate the volatility of the portfolio (50%, 50%, 0).

87We consider the Basel II capital requirement rules.
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(c) Calculate the volatility of the portfolio (60%,−40%, 0). Comment
on this result.

(d) We assume that the portfolio is long $150 in stock A, long $500
in stock B and short $200 in stock C. Find the volatility of this
long/short portfolio.

3. We consider that the vector of stock returns follows a one-factor model:

R = βF + ε

We assume that F and ε are independent. We note σ2
F the variance of F

and D = diag
(
σ̃2

1 , σ̃
2
2 , σ̃

2
3

)
the covariance matrix of idiosyncratic risks εt.

We use the following numerical values: σF = 50%, β1 = 0.9, β2 = 1.3,
β3 = 0.1, σ̃1 = 5%, σ̃2 = 5% and σ̃3 = 15%.

(a) Calculate the volatility of stock returns.

(b) Calculate the correlation between stock returns.

4. Let X and Y be two independent random vectors. We note µ (X) and
µ (Y ) the vector of means and Σ (X) and Σ (Y ) the covariance matrices.
We define the random vector Z = (Z1, Z2, Z3) where Zi is equal to the
product XiYi.

(a) Calculate µ (Z) and cov (Z).

(b) We consider that µ (X) is equal to zero and Σ (X) corresponds to
the covariance matrix of Question 2. We assume that Y1, Y2 and
Y3 are three independent uniform random variables U (0, 1). Calcu-
late the 99% Gaussian value-at-risk of the portfolio corresponding
to Question 2(d) when Z is the random vector of asset returns.
Compare this value with the Monte Carlo VaR.

2.4.3 Risk measure

1. We denote F the cumulative probability distribution of the loss L.

(a) Give the mathematical definition of the value-at-risk and expected
shortfall risk measures.

(b) Show that:

ESα =
1

1− α

∫ 1

α

F−1 (t) dt

(c) We assume that L follows a Pareto distribution P (θ;x−) defined
by:

Pr {L ≤ x} = 1−
(
x

x−

)−θ
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where x ≥ x− and θ > 1. Calculate the moments of order one and
two. Interpret the parameters x− and θ. Calculate ESα and show
that:

ESα > VaRα

(d) Calculate the expected shortfall when L is a Gaussian random vari-
able N

(
µ, σ2

)
. Show that:

Φ (x) = −φ (x)

x1
+
φ (x)

x3
+ . . .

Deduce that:
ESα → VaRα when α→ 1

(e) Comment on these results in a risk management perspective.

2. Let R (L) be a risk measure of the loss L.

(a) Is R (L) = E [L] a coherent risk measure?
(b) Same question if R (L) = E [L] + σ (L).

3. We assume that the probability distribution F of the loss L is defined
by:

Pr {L = `i} =

{
20% if `i = 0
10% if `i ∈ {1, 2, 3, 4, 5, 6, 7, 8}

(a) Calculate ESα for α = 50%, α = 75% and α = 90%.
(b) Let us consider two losses L1 and L2 with the same distribution

F. Build a joint distribution of (L1, L2) which does not satisfy the
subadditivity property when the risk measure is the value-at-risk.

2.4.4 Value-at-risk of a long/short portfolio

We consider a long/short portfolio composed of a long (buying) position
in asset A and a short (selling) position in asset B. The long exposure is $2
mn whereas the short exposure is $1 mn. Using the historical prices of the last
250 trading days of assets A and B, we estimate that the asset volatilities σA
and σB are both equal to 20% per year and that the correlation ρA,B between
asset returns is equal to 50%. In what follows, we ignore the mean effect.

1. Calculate the Gaussian VaR of the long/short portfolio for a one-day
holding period and a 99% confidence level.

2. How do you calculate the historical VaR? Using the historical returns of
the last 250 trading days, the five worst scenarios of the 250 simulated
daily P&L of the portfolio are −58 700, −56 850, −54 270, −52 170 and
−49 231. Calculate the historical VaR for a one-day holding period and
a 99% confidence level.
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3. We assume that the multiplication factor mc is 3. Deduce the required
capital if the bank uses an internal model based on the Gaussian value-
at-risk. Same question when the bank uses the historical VaR. Compare
these figures with those calculated with the standardized measurement
method.

4. Show that the Gaussian VaR is multiplied by a factor equal to
√

7/3 if
the correlation ρA,B is equal to −50%. How do you explain this result?

5. The portfolio manager sells a call option on the stock A. The delta of
the option is equal to 50%. What does the Gaussian value-at-risk of the
long/short portfolio become if the nominal of the option is equal to $2
mn? Same question when the nominal of the option is equal to $4 mn.
How do you explain this result?

6. The portfolio manager replaces the short position on the stock B by
selling a call option on the stock B. The delta of the option is equal
to 50%. Show that the Gaussian value-at-risk is minimum when the
nominal is equal to four times the correlation ρA,B . Deduce then an
expression of the lowest Gaussian VaR. Comment on these results.

2.4.5 Value-at-risk of an equity portfolio hedged with put
options

We consider two stocks A and B and an equity index I. We assume that
the risk model corresponds to the CAPM and we have:

Rj = βjRI + εj

where Rj and RI are the return of stock j and the index. We assume that
RI and εj are independent. The covariance matrix of idiosyncratic risks is
diagonal and we note σ̃j the volatility of εj .

1. The parameters are the following: σ2 (RI) = 4%, βA = 0.5, βB = 1.5,
σ̃2
A = 3% and σ̃2

B = 7%.

(a) Calculate the volatility of stocks A and B and the cross-correlation.

(b) Find the correlation between the stocks and the index.

(c) Deduce the covariance matrix.

2. The current price of stocks A and B is equal to $100 and $50 whereas
the value of the index is equal to $50. The composition of the portfolio
is 4 shares of A, 10 shares of B and 5 shares of I.

(a) Determine the Gaussian value-at-risk for a confidence level of 99%
and a 10-day holding period.
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(b) Using the historical returns of the last 260 trading days, the five
lowest simulated daily P&Ls of the portfolio are −62.39, −55.23,
−52.06, −51.52 and −42.83. Calculate the historical VaR for a con-
fidence level of 99% and a 10-day holding period.

(c) What is the regulatory capital88 if the bank uses an internal model
based on the Gaussian value-at-risk? Same question when the bank
uses the historical value-at-risk. Compare these figures with those
calculated with the standardized measurement method.

3. The portfolio manager would like to hedge the directional risk of the
portfolio. For that, he purchases put options on the index I at a strike
price of $45 with a delta equal to −25%. Write the expression of the
P&L using the delta approach.

(a) How many options should the portfolio manager purchase for hedg-
ing 50% of the index exposure? Deduce the Gaussian value-at-risk
of the corresponding portfolio?

(b) The portfolio manager believes that the purchase of 96 put options
minimizes the value-at-risk. What is the basis for his reasoning?
Do you think that it is justified? Calculate then the Gaussian VaR
of this new portfolio.

2.4.6 Risk management of exotic options

Let us consider a short position on an exotic option, whose its current
value Ct is equal to $6.78. We assume that the price St of the underlying asset
is $100 and the implied volatility Σt is equal to 20%.

1. At time t + 1, the value of the underlying asset is $97 and the implied
volatility remains constant. We find that the P&L of the trader between
t and t+1 is equal to $1.37. Can we explain the P&L by the sensitivities
knowing that the estimates of delta ∆t, gamma Γt and vega89 υt are
respectively equal to 49%, 2% and 40%?

2. At time t+ 2, the price of the underlying asset is $97 while the implied
volatility increases from 20% to 22%. The value of the option Ct+2 is now
equal to $6.17. Can we explain the P&L by the sensitivities knowing that
the estimates of delta ∆t+1, gamma Γt+1 and vega υt+1 are respectively
equal to 43%, 2% and 38%?

3. At time t + 3, the price of the underlying asset is $95 and the value
of the implied volatility is 19%. We find that the P&L of the trader
between t + 2 and t + 3 is equal to $0.58. Can we explain the P&L by

88We assume that the multiplication factor mc is equal to 3.
89measured in volatility points.
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the sensitivities knowing that the estimates of delta ∆t+2, gamma Γt+2

and vega υt+2 are respectively equal to 44%, 1.8% and 38%.

4. What can we conclude in terms of model risk?

2.4.7 P&L approximation with Greek sensitivities

1. Let Ct be the value of an option at time t. Define the delta, gamma,
theta and vega coefficients of the option.

2. We consider an European call option with strike K. Give the value of
option in the case of the Black-Scholes model. Deduce then the Greek
coefficients.

3. We assume that the underlying asset is a non-dividend stock, the residual
maturity of the call option is equal to one year, the current price of the
stock is equal to $100 and the interest rate is equal to 5%. We also
assume that the implied volatility is constant and equal to 20%. In
the table below, we give the value of the call option C0 and the Greek
coefficients ∆0, Γ0 and Θ0 for different values of K:

K 80 95 100 105 120

C0 24.589 13.346 10.451 8.021 3.247
∆0 0.929 0.728 0.637 0.542 0.287
Γ0 0.007 0.017 0.019 0.020 0.017
Θ0 −4.776 −6.291 −6.414 −6.277 −4.681

(a) Explain how these values have been calculated. Comment on these
numerical results.

(b) One day later, the value of the underlying asset is $102. Using the
Black-Scholes formula, we obtain:

K 80 95 100 105 120

C1 26.441 14.810 11.736 9.120 3.837

Explain how the option premium C1 is calculated. Deduce then the
P&L of a long position on this option for each strike K.

(c) For each strike price, calculate an approximation of the P&L con-
sidering the sensitivities ∆, ∆−Γ, ∆−Θ and ∆−Γ−Θ. Comment
on these results.

(d) Six months later, the value of the underlying asset is $148. Repeat
Questions 3(b) and 3(c) with these new parameters. Comment on
these results.
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2.4.8 Calculating the non-linear quadratic value-at-risk

1. Let X ∼ N (0, 1). Show that the even moments of X are given by the
following relationship:

E
[
X2n

]
= (2n− 1)E

[
X2n−2

]
with n ∈ N. Calculate the odd moments of X.

2. We consider a long position on a call option. The actual price St of the
underlying asset is equal to $100, whereas the delta and the gamma of
the option are respectively equal to 50% and 2%. We assume that the
annual return of the asset is a Gaussian distribution with an annual
volatility equal to 32.25%.

(a) Calculate the Gaussian daily value-at-risk using the delta approx-
imation with a 99% confidence level.

(b) Calculate the Gaussian daily value-at-risk by considering the delta-
gamma approximation.

(c) Deduce the Cornish-Fisher daily value-at-risk.

3. Let X ∼ N (µ, I) and Y = X>AX with A a symmetric square matrix.

(a) We recall that:

E [Y ] = µ>Aµ+ tr (A)

E
[
Y 2
]

= E2 [Y ] + 4µ>A2µ+ 2 tr
(
A2
)

Deduce the moments of Y = X>AX when X ∼ N (µ,Σ).

(b) We suppose that µ = 0. We recall that:

E
[
Y 3
]

= (tr (A))
3

+ 6 tr (A) tr
(
A2
)

+ 8 tr
(
A3
)

E
[
Y 4
]

= (tr (A))
4

+ 32 tr (A) tr
(
A3
)

+ 12
(
tr
(
A2
))2

+

12 (tr (A))
2

tr
(
A2
)

+ 48 tr
(
A4
)

Compute the moments, the skewness and the excess kurtosis of
Y = X>AX when X ∼ N (0,Σ).

4. We consider a portfolio w = (w1, . . . , wn) of options. We assume that
the vector of daily asset returns is distributed according to the Gaussian
distribution N (0,Σ). We note ∆ and Γ the vector of deltas and the
matrix of gammas.

(a) Calculate the Gaussian daily value-at-risk using the delta approx-
imation. Define the analytical expression of the risk contributions.
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(b) Calculate the Gaussian daily value-at-risk by considering the delta-
gamma approximation.

(c) Calculate the Cornish-Fisher daily value-at-risk when assuming
that the portfolio is delta neutral.

(d) Calculate the Cornish-Fisher daily value-at-risk in the general case
by only considering the skewness.

5. We consider a portfolio composed of 50 options in a first asset, 20 options
in a second asset and 20 options in a third asset. We assume that the
gamma matrix is:

Γ =

 4.0%
1.0% 1.0%
0.0% −0.5% 1.0%


The actual price of the assets is normalized and is equal to 100. The
daily volatility levels of the assets are respectively 1%, 1.5% and 2%
whereas the correlation matrix of asset returns is:

ρ =

 100%
50% 100%
25% 15% 100%


(a) Compare the different methods to compute the daily value-at-risk

with a 99% confidence level if the portfolio is delta neutral.

(b) Same question if we now consider that the deltas are equal to 50%,
40% and 60%. Compute the risk decomposition in the case of the
delta and delta-gamma approximations. What do you notice?

2.4.9 Risk decomposition of the expected shortfall

We consider a portfolio composed of n assets. We assume that asset returns
R = (R1, . . . , Rn) are normally distributed with R ∼ N (µ,Σ). We note L (w)
the loss of the portfolio.

1. Find the distribution of L (w).

2. Define the expected shortfall ESα (w). Calculate its expression in the
present case.

3. Calculate the risk contribution RCi of asset i. Deduce that the expected
shortfall verifies the Euler allocation principle.

4. Give the expression of RCi in terms of conditional loss. Retrieve the for-
mula of RCi found in Question 3. What is the interest of the conditional
representation?
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2.4.10 Expected shortfall of an equity portfolio

We consider an investment universe, which is composed of two stocks A
and B. The current prices of the two stocks are respectively equal to $100 and
$200. Their volatilities are equal to 25% and 20% whereas the cross-correlation
is equal to −20%. The portfolio is long of 4 stocks A and 3 stocks B.

1. Calculate the Gaussian expected shortfall at the 97.5% confidence level
for a ten-day time horizon.

2. The eight worst scenarios of daily stock returns among the last 250
historical scenarios are the following:

s 1 2 3 4 5 6 7 8

RA −3% −4% −3% −5% −6% +3% +1% −1%
RB −4% +1% −2% −1% +2% −7% −3% −2%

Calculate then the historical expected shortfall at the 97.5% confidence
level for a ten-day time horizon.



Chapter 3
Credit Risk

In this chapter, we give an overview of the credit market. It concerns loans and
bonds, but also credit derivatives whose development was impressive during
the 2000s. A thorough knowledge of the products is necessary to understand
the regulatory framework for computing the calculation of capital require-
ments for credit risk. In this second section, we will therefore compare Basel
I and Basel II and present the new propositions to reform the standardized
approach. However, the case of counterparty credit risk will be treated in the
next chapter, which focuses on collateral risk. Finally, the last section is ded-
icated to the modeling of credit risk. We will develop the statistical methods
for representing and estimating the main parameters (probability of default,
loss given default and default correlations) and we will show the tools of credit
risk management.

3.1 The market of credit risk

3.1.1 The loan market

In this section, we present the traditional debt market of loans based on
banking intermediation, as opposed to the financial market of debt securities
(money market instruments, bonds and notes). We generally distinguish this
credit market along two main lines: counterparties and products.

Counterparties are divided into 4 main categories: sovereign, financial, cor-
porate and retail. Banking groups have adopted this customer-oriented ap-
proach by differentiating retail banking and corporate and investment bank-
ing (CIB) businesses. Retail banking refers to individuals. It may also include
micro-sized firms and small and medium-sized enterprises (SME). CIBs con-
cern middle market firms, corporates, financial institutions and public entities.
In retail banking, the bank pursues a client segmentation, meaning that all the
clients that belongs to the same segment have the same conditions in terms
of financing and financial investment. This also implies that the pricing of the
loan is the same for two individuals of the same segment. The issue for the
bank is then to propose or not a loan offer to his client. For that, the bank uses
statistical decision-making methods, which are called credit scoring models.
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Contrary to this binary approach (yes or no), CIBs have a personalized ap-
proach to their clients. They estimate their probability of default and changes
the pricing condition of the loan on the basis of the results. A client with a
low default probability will have a lower rate or credit spread than a client
with a higher default probability for the same loan.

The household credit market is organized as follows: mortgage and housing
debt, consumer credit and student loans. A mortgage is a debt instrument se-
cured by the collateral of a real estate property. In the case which the borrower
defaults on the loan, the lender can take possession and sell the secured prop-
erty. For instance, the home buyer pledges his house to the bank in a residential
mortgage. This type of credit is very frequent in English-speaking countries,
notably England and the United States. In continental Europe, home loans
are generally not collateralized for a primary home. This is not always the
case for buy-to-let investments and second-home loans. Consumer credit is
used for equipment financing or leasing. We usually make the distinction be-
tween auto loans, credit cards, revolving credit and other loans (personal loans
and sales financing). Auto loans are personal loans to purchase a car. Credit
cards and revolving credit are two forms of personal lines of credit. Revolving
credit facilities for individuals are very popular in the US. It can be secured,
as in the case of a home equity line of credit (HELOC). Student loans are
used to finance educational expenses, for instance post-graduate studies at
the university. The corporate credit market is organized differently, because
large corporates have access to the financial market for long-term financing.
This explains that revolving credit facilities are essential to provide liquidity
for the firm’s day-to-day operations. The average maturity is then lower for
corporates than for individuals.

Credit statistics for the private non-financial sector (households and non-
financial corporations) are reported in Figures 3.1 and 3.2. These statistics
include loan instruments, but also debt securities. In the case of the United
States1, we notice that the credit amount for households2 is close to the figure
for non-financial business. We also observe the significant share of consumer
credit and the strong growth of student loans. Figure 3.2 illustrates the evo-
lution of debt outstanding3 for different countries: China, United Kingdom,
Japan, United States and the Euro area. In China, the annual growth rate is
larger than 15% these last five years. Even if credit for households develops
much faster than credit for corporations, it only represent 18.7% of the total
credit market of the private non-financial sector. The Chinese market con-

1Data are from the statistical release Z.1 “Financial Accounts of the United States”. They
are available from the website of the Federal Reserve System: http://www.federalreserve.
gov/releases/z1/ or more easily with the database of the Federal Reserve Bank of St. Louis:
https://research.stlouisfed.org/fred2.

2Data for households include non-profit institutions serving households (NPISH).
3Data are collected by the Bank for International Settlement and are available in the

website of the BIS: http://www.bis.org/statistics. The series are adjusted for breaks
(Dembiermont et al. (2013)) and we use the average exchange rate from 2000 to 2014 in
order to obtain credit amounts in USD.
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FIGURE 3.1: Notional outstanding of credit in the United States (in $ tn)

Source: Board of Governors of the Federal Reserve System (2015).

trasts with developed markets where the share of household credit is larger4
and growth rates are almost flat since the 2008 financial crisis. The Japanese
case is also very specific, because this country experienced a strong financial
crisis after the bursting of a bubble in the 1990s. At that time, the Japanese
market was the world’s leading market followed by the United States.

3.1.2 The bond market

Contrary to loan instruments, bonds are debt securities that are traded in a
financial market. The primary market concerns the issuance of bonds whereas
bond trading is organized through the secondary market. The bond issuance
market is dominated by two sectors: central and local governments (includ-
ing public entities) and corporates. This is the principal financing source for
government projects and public budget deficit. Large corporates also use ex-
tensively the bond market for investments, business expansions and external
growth. The distinction government bonds/corporate bonds was crucial before
the 2008 financial crisis. Indeed, it was traditionally believed that government

4This is especially true in the UK and the US.
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FIGURE 3.2: Credit to the private non-financial sector (in $ tn)

Source: Bank for International Settlement (2015).

bonds (in developed countries) were not risky because the probability of de-
fault was very low. In this case, the main risk was the interest rate risk, which
is a market risk. Conversely, corporate bonds were supposed to be risky be-
cause the probability of default was higher. Beside the interest rate risk, it was
important to take into account the credit risk. Bonds issued from the financial
and banking sector were considered as low risk investments. Since 2008, this
difference between non-risky and risky bonds has disappeared, meaning that
all issuers are risky. The 2008 financial crisis had also another important con-
sequence on the bond market. It is today less liquid even for sovereign bonds.
Liquidity risk is then a concern when measuring and managing the risk of a
bond portfolio. This point will be developed in Chapter 6.

3.1.2.1 Statistics of the bond market

In Table 3.1, we indicate the amounts outstanding of debt securities by
residence of issuer5. The total is split into three sectors: general government
(Gov.), financial corporations (Fin.) and non-financial corporations (Cor.). In

5The data are available in the website of the BIS: http://www.bis.org/statistics.
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TABLE 3.1: Debt securities by residence of issuer (in $ bn)

Dec. 2004 Dec. 2007 Dec. 2010 Dec. 2014

Canada

Gov. 683 835 1 144 1 202
Fin. 279 423 369 524
Cor. 208 238 310 411

Total 1 171 1 497 1 822 2 137

France

Gov. 1 236 1 512 1 837 2 084
Fin. 968 1 621 1 819 1 597
Cor. 373 382 483 628

Total 2 577 3 515 4 139 4 310

Germany

Gov. 1 380 1 717 2 040 2 000
Fin. 2 296 2 766 2 283 1 625
Cor. 133 174 168 155

Total 3 809 4 657 4 491 3 780

Italy

Gov. 1 637 1 928 2 069 2 182
Fin. 772 1 156 1 403 1 128
Cor. 68 95 121 159

Total 2 478 3 178 3 593 3 469

Japan

Gov. 6 240 6 162 10 064 8 226
Fin. 2 509 2 721 3 442 2 188
Cor. 996 758 989 658

Total 9 745 9 642 14 496 11 072

Spain

Gov. 462 498 796 1 057
Fin. 434 1 385 1 442 942
Cor. 15 19 19 26

Total 910 1 901 2 256 2 024

UK

Gov. 770 1 026 1 648 2 630
Fin. 1 775 3 121 3 087 2 874
Cor. 480 549 519 615

Total 3 026 4 700 5 255 6 122

US

Gov. 6 422 7 385 11 911 15 454
Fin. 12 576 17 410 15 356 14 995
Cor. 2 987 3 329 3 936 5 109

Total 22 183 28 374 31 466 35 781

Source: Bank for International Settlement (2015).
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most countries, debt securities issued by general government largely dominate,
except in the UK and US where debt securities issued by financial corporations
(banks and other financial institutions) are more important. The share of
non-financial business varies considerably from one country to another. For
instance, it represents less than 10% in Germany, Italy, Japan and Spain,
whereas it is equal to 20% in Canada. The total amount of debt securities
tends to rise, with the notable exception of Germany, Japan and Spain.

FIGURE 3.3: Amounts outstanding US bond market debt (in $ tn)

Source: Securities Industry and Financial Markets Association (2015).

The analysis of the US market is particularly interesting and relevant. Us-
ing the data collected by the Securities Industry and Financial Markets Associ-
ation6 (SIFMA), we have reported in Figure 3.3 the evolution of amounts out-
standing for the following sectors: municipal bonds, treasury bonds, mortgage-
related bonds, corporate related debt, federal agency securities, money mar-
kets and asset-backed securities. We notice an important growth during the
beginning of the 2000s (see also Figure 3.4), followed by a slowdown after
2008. However, the debt outstanding continues to grow because the average
maturity of new issuance increases. Another remarkable fact is the fall of the

6Data are available in the website of the SIFMA: http://www.sifma.org/research/
statistics.aspx.
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FIGURE 3.4: Issuance in the US bond markets (in $ tn)

Source: Securities Industry and Financial Markets Association (2015).

liquidity, which can be measured by the average daily volume (ADV). Fig-
ure 3.5 shows that the ADV of treasury bonds remains constant since 2000
whereas the outstanding has been multiplied by four during the same period.
We also notice that the turnover of US bonds mainly concerns treasury and
agency MBS bonds. The liquidity on the other sectors is very poor. For in-
stance, according to SIFMA (2015), the ADV of US corporate bonds is less
than $30 bn in 2014, which is 22 times lower than the ADV for treasury
bonds7.

3.1.2.2 Pricing of bonds

Without default risk We consider that the bond pays coupons C (tm)
with fixing dates tm and the notional N (or the par value) at the maturity
date T . We have reported an example of a cash flows scheme in Figure 3.6.
Knowing the yield curve8, the price of the bond at the inception date t0 is the

7However, the ratio between their amounts outstanding is only 1.6.
8A convenient way to define the yield curve is to use a parametric model for the zero-

coupon rates Rt (T ). The most famous model is the parsimonious functional form proposed
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FIGURE 3.5: Average daily trading volume in US bond markets (in $ bn)

Source: Securities Industry and Financial Markets Association (2015).
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FIGURE 3.6: Cash flows of a bond with a fixed coupon rate
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sum of the present values of all expected coupon payments and the par value:

Pt0 =

nC∑
m=1

C (tm)Bt0 (tm) +NBt0 (T )

where Bt (t′) is the discount factor at time t for the maturity date t′. When
the valuation date is not the issuance date, the previous formula remains valid
if we take into account the accrued interests. In this case, the buyer of the
bond has the benefit of the next coupon. The price of the bond then satisfies:

Pt +ACt =
∑
tm≥t

C (tm)Bt (tm) +NBt (T ) (3.2)

Here, ACt is the accrued coupon:

ACt = C (tc)×
t− tc
365

and t
c
is the last coupon payment date with c = {m : tm+1 > t, tm ≤ t}. Pt +

ACt is called the dirty price whereas Pt refers to the clean price. The term
structure of interest rates impacts the bond price. We generally distinguish
three movements:

1. The movement of level corresponds to a parallel shift of interest rates.

2. A twist in the slope of the yield curve indicates how the spread between
long and short interest rates moves.

3. A change in the curvature of the yield curve affects the convexity of the
term structure.

All these movements are illustrated in Figure 3.7.
The yield to maturity y of a bond is the constant discount rate which

returns its market price:∑
tm≥t

C (tm) e−(tm−t)y +Ne−(T−t)y = Pt +ACt

by Nelson and Siegel (1987):

Rt (T ) = θ1 + θ2

(
1− exp (− (T − t)/ θ4)

(T − t)/ θ4

)
+

θ3

(
1− exp (− (T − t)/ θ4)

(T − t)/ θ4
− exp (− (T − t)/ θ4)

)
(3.1)

This is a model with four parameters: θ1 is a parameter of level, θ2 is a parameter of
rotation, θ3 controls the shape of the curve and θ4 permits to localize the break of the
curve. We also note that the short-term and long-term interest rates Rt (t) and Rt (∞) are
respectively equal to θ1 + θ2 and θ1.
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FIGURE 3.7: Movements of the yield curve

We also define the sensitivity9 S of the bond price as the derivative of the
clean price Pt with respect to the yield to maturity y :

S =
∂ Pt
∂ y

= −
∑
tm≥t

(tm − t)C (tm) e−(tm−t)y − (T − t)Ne−(T−t)y

It indicates how the P&L of a long position in the bond moves when the yield
to maturity changes:

Π ≈ S ×∆y

Because S < 0, the bond price is a decreasing function with respect to interest
rates. This implies that an increase of interest rates reduces the value of the
bond portfolio.

Example 22 We assume that the term structure of interest rates is generated
by the Nelson-Siegel model with θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10.
We consider a bond with a constant 5% annual coupon. The nominal of the
bond is $100. We would like to price the bond when the maturity T ranges
from 1 to 5 years.
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TABLE 3.2: Price, yield to maturity and sensitivity of bonds

T Rt (T ) Bt (T ) Pt y S

1 0.52% 99.48 104.45 0.52% −104.45
2 0.99% 98.03 107.91 0.98% −210.86
3 1.42% 95.83 110.50 1.39% −316.77
4 1.80% 93.04 112.36 1.76% −420.32
5 2.15% 89.82 113.63 2.08% −520.16

TABLE 3.3: Impact of a parallel shift of the yield curve on the bond with
five-year maturity

∆R
P̆t ∆Pt P̂t ∆Pt S ×∆y(in bps)

−50 116.26 2.63 116.26 2.63 2.60
−30 115.20 1.57 115.20 1.57 1.56
−10 114.15 0.52 114.15 0.52 0.52

0 113.63 0.00 113.63 0.00 0.00
10 113.11 −0.52 113.11 −0.52 −0.52
30 112.08 −1.55 112.08 −1.55 −1.56
50 111.06 −2.57 111.06 −2.57 −2.60

Using the Nelson-Siegel yield curve, we report in Table 3.2 the price of
the bond with maturity T (expressed in years) with a 5% annual coupon. For
instance, the price of the four-year bond is calculated in the following way:

Pt =
5

(1 + 0.52%)
+

5

(1 + 0.99%)
2 +

5

(1 + 1.42%)
3 +

105

(1 + 1.80%)
4 = $112.36

We also indicate the yield to maturity y (in %) and the corresponding sensi-
tivity S. Let P̆t (resp. P̂t) be the bond price by taking into account a parallel
shift ∆R (in bps) directly on the zero-coupon rates (resp. on the yield to
maturity). The results are given in Table 3.3 in the case of the bond with a
five-year maturity10. We verify that the computation based on the sensitivity
provides a good approximation. This method has been already used in the
previous chapter (page 78) to calculate the value-at-risk of bonds.

9This sensitivity is also called the $-duration or DV01.
10We have:

P̌t =
∑
tm≥t

C (tm) e−(tm−t)(Rt(tm)+∆R) +Ne−(T−t)(Rt(T )+∆R)

P̂t =
∑
tm≥t

C (tm) e−(tm−t)(y+∆R) +Ne−(T−t)(y+∆R)
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FIGURE 3.8: Cash flows of a bond with default risk

With default risk In the previous paragraph, we implicitly assumed that
there is no default risk. If the issuer defaults at time τ before the bond matu-
rity T , some coupons and the notional are not paid. In this case, the buyer of
the bond recovers part of the notional after the default time. An illustration
is given in Figure 3.8. In terms of cash flows, we have therefore:

• the coupons C (tm) if the bond issuer does not default before the coupon
date tm: ∑

tm≥t

C (tm)× 1 {τ > tm}

• the notional if the bond issuer does not default before the maturity date:

N × 1 {τ > T}

• the recovery part if the bond issuer defaults before the maturity date:

R×N × 1 {τ ≤ T}

where R is the corresponding recovery rate.

If we assume that the recovery part is exactly paid at the default time τ , we
deduce that the stochastic discounted value of the cash flow leg is:

SVt =
∑
tm≥t

C (tm)× e−
∫ tm
t

rs ds × 1 {τ > tm}+

N × e−
∫ T
t
rs ds × 1 {τ > T}+ R×N × e−

∫ τ
t
rs ds × 1 {τ ≤ T}
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The price of the bond is the expected value of the stochastic discounted
value11: Pt + ACt = E [SVt | Ft]. If we assume that (H1) the default time
and the interest rates are independent and (H2) the recovery rate is known
and not stochastic, we obtain the following closed-form formula:

Pt +ACt =
∑
tm≥t

C (tm)Bt (tm) St (tm) +NBt (T ) St (T ) +

RN

∫ T

t

Bt (u) ft (u) du (3.3)

where St (u) is the survival function at time u and ft (u) the associated density
function12.

Remark 22 If the issuer is not risky, we have St (u) = 1 and ft (u) = 0. In
this case, Equation (3.3) reduces to Equation (3.2).

Remark 23 If we consider an exponential default time with parameter λ –
τ ∼ E (λ), we have St (u) = e−λ(u−t), ft (u) = λe−λ(u−t) and:

Pt +ACt =
∑
tm≥t

C (tm)Bt (tm) e−λ(tm−t) +NBt (T ) e−λ(T−t) +

λRN

∫ T

t

Bt (u) e−λ(u−t) du

If we assume a flat yield curve – Rt (u) = r, we obtain:

Pt +ACt =
∑
tm≥t

C (tm) e−(r+λ)(tm−t) +Ne−(r+λ)(T−t) +

λRN

(
1− e−(r+λ)(T−t)

r + λ

)
Example 23 We consider a bond with ten-year maturity. The notional is
$100 whereas the annual coupon rate is equal to 4.5%.

If we consider that r = 0, the price of the non-risky bond is $145. With
r = 5%, the price becomes $95.19. Let us now take into account the default
risk. We assume that the recovery rate R is 40%. If λ = 2% (resp. 10%),
the price of the risky bond is $86.65 (resp. $64.63). If the yield curve is not
flat, we must use the general formula (3.3) to compute the price of the bond.
In this case, the integral is evaluated with a numerical integration procedure,
typically a Gauss-Legendre quadrature. For instance, if we consider the yield

11It is also called the present value.
12We have:

St (u) = E [1 {τ > u | τ > t}] = Pr {τ > u | τ > t}
The density function is then given by ft (u) = −∂uSt (u).
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curve defined in Example 22, the bond price is equal to $110.13 if there is no
default risk, $99.91 if λ = 2% and $73.34 if λ = 10%.

The yield to maturity of the defaultable bond is computed exactly in the
same way as without default risk. The credit spread s is then defined as the
difference of the yield to maturity with default risk y and the yield to maturity
without default risk y?:

s = y − y? (3.4)

This spread is a credit risk measure and is an increasing function of the default
risk. Reconsider the simple model with a flat yield curve and an exponential
default time. If the recovery rate R is equal to zero, we deduce that the yield
to maturity of the defaultable bond is y = r + λ. It follows that the credit
spread is equal to the parameter λ of the exponential distribution. Moreover,
if λ is relatively small (less than 20%), the annual default probability is:

PD = St (t+ 1) = 1− e−λ ≈ λ

In this case, the credit spread is approximately equal to the annual default
probability (s ' PD).

If we reuse our previous example with the yield curve specified in Example
22, we obtain the results reported in Table 3.3. For instance, the yield to
maturity of the bond is equal to 3.24% without default risk. If λ and R are
set to 200 bps and 0%, the yield to maturity becomes 5.22% which implies
a credit spread of 198.1 bps. If the recovery rate is higher, the credit spread
decreases. Indeed, with λ equal to 200 bps, the credit spread is equal to 117.1
bps if R = 40% and only 41.7 bps if R = 80%.

TABLE 3.4: Computation of the credit spread s
R λ PD Pt y s

(in %) (in bps) (in bps) (in $) (in %) (in bps)

0

0 0.0 110.1 3.24 0.0
10 10.0 109.2 3.34 9.9

200 198.0 93.5 5.22 198.1
1000 951.6 50.4 13.13 988.9

40

0 0.0 110.1 3.24 0.0
10 10.0 109.6 3.30 6.0

200 198.0 99.9 4.41 117.1
1000 951.6 73.3 8.23 498.8

80

0 0.0 110.1 3.24 0.0
10 10.0 109.9 3.26 2.2

200 198.0 106.4 3.66 41.7
1000 951.6 96.3 4.85 161.4
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Remark 24 In the case of loans, we do not calculate a capital requirement for
market risk, only a capital requirement for credit risk. The reason is that there
is no market price of the loan, because it can not be traded in an exchange.
For bonds, we calculate a capital requirement for both market and credit risks.
In the case of the market risk, risk factors are the yield curve, but also the
parameters associated to the credit risk, for instance the default probabilities
and the recovery rate. In this context, market risk has a credit component.
To illustrate this property, we consider the previous example and we assume
that λt varies across time whereas the recovery rate Rt is equal to 40%. In
Figure 3.9, we show the evolution of the process λt for the next 10 years (top
panel) and the clean price13 Pt (bottom/left panel). If we suppose now that the
issuer defaults suddenly at time t = 6.25, we observe a jump in the clean price
(bottom/right panel). It is obvious that the market risk takes into account the
short-term evolution of the credit component (or the smooth part), but does
not incorporate the price jump risk (or the discontinuous part) and also the
large uncertainty on the recovery price. This is why these risks are covered by
credit risk capital requirements.

FIGURE 3.9: Difference between market and credit risk for a bond

13We assume that the yield curve remains constant.
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3.1.3 Securitization and credit derivatives

Since the 1990s, banks have developed credit transfer instruments in two
directions: credit securitization and credit derivatives. The term securitization
refers to the process of transforming illiquid and non-tradable assets into trad-
able securities. Credit derivatives are financial instruments whose the payoff
explicitly depends on credit events like the default of an issuer. These two top-
ics are highly connected because credit securities can be used as underlying
assets of credit derivatives.

3.1.3.1 Credit securitization

According to AFME (2015), amounts outstanding of securitization is close
to e 9 tn. Figure 3.10 shows the evolution of issuance in Europe and US since
2000. We observe that the financial crisis had a negative impact of the growth
of credit securitization, especially in Europe that represents less than 20% of
this market.

FIGURE 3.10: Securitization in Europe and US (in etn)

Source: Association for Financial Markets in Europe (2015).

Credit securities are better known as asset-backed securities (ABS), even if
this term is generally reserved to assets that are not mortgage, loans or corpo-
rate bonds. In its simplest form, an ABS is a bond whose coupons are derived
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FIGURE 3.11: Structure of pass-through securities

by a collateral pool of assets. We generally make the following distinction with
respect to the type of collateral assets:

• Mortgage-backed securities (MBS)

– Residential mortgage-backed securities (RMBS)

– Commercial mortgage-backed securities (CMBS)

• Collateralized debt obligations (CDO)

– Collateralized loan obligations (CLO)

– Collateralized bond obligations (CBO)

• Asset-backed securities (ABS)

– Auto loans

– Credit cards and revolving credit

– Student loans

MBS are securities that are backed by residential and commercial mortgage
loans. The most basic structure is a pass-through security, where the coupons
are the same for all the investors and are proportional to the revenue of the
collateral pool. Such structure is showed in Figure 3.11. The originator (e.g.
a bank) sells a pool of debt to a special purpose vehicle (SPV). The SPV is
an ad-hoc legal entity14 whose sole function is to hold the loans as assets and
issue the securities for investors. In the pass-through structure, the securities

14It may be a subsidiary of the originator.
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are all the same and the cash flows paid to investors are directly proportional
to interests and principals of collateral assets. More complex structures are
possible with several classes of bonds (see Figure 3.12). In this case, the cash
flows differ from one type of securities to another one. The most famous ex-
ample is the collateralized debt obligation, where the securities are divided
into tranches. This category includes also collateralized mortgage obligations
(CMO), which are both MBS and CDO. The two other categories of CDO are
CLO, which are backed by corporate bank debt (e.g. SME loans) and CBO,
which are backed by bonds (e.g. high yield bonds). Finally, pure ABS princi-
pally concerns consumer credit such as auto loans, credit cards and student
loans.

Collateral
Pool

of Debt

Special
Purpose
Vehicle

Security A

Security B

Security C

FIGURE 3.12: Structure of pay-through securities

In Table 3.5, we report some statistics about US mortgage-backed secu-
rities. SIFMA (2015) makes the distinction between agency MBS and non-
agency MBS. After the Great Depression, the US government created three
public entities to promote home ownership and provide insurance of mortgage
loans: the Federal National Mortgage Association (FNMA or Fannie Mae), the
Federal Home Loan Mortgage Corporation (FHLMC or Freddie Mac) and the
Government National Mortgage Association (GNMA or Ginnie Mae). Agency
MBS refer to securities guaranteed by these three public entities and repre-
sent the main part of the US MBS market. This is especially true since the
2008 financial crisis. Indeed, non-agency MBS represent 52.1% of the issuance
in 2007 and only 11.4% in 2014. Because agency MBS are principally based
on home mortgage loans, the RMBS market is ten times more larger than
the CMS market. CDO and ABS markets are smaller and represent together
about $2 bn (see Tables 3.6 and 3.7). The CDO market strongly suffered from
the subprime crisis15. During the same period, the structure of the ABS mar-
ket changed with an increasing proportion of ABS backed by auto loans and
a fall of ABS backed by credit cards and student loans.

15For instance, the issuance of US CDO was less than 2bn in 2010.
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TABLE 3.5: US mortgage-backed securities

Year Agency Non-agency Total
MBS CMO CMBS RMBS (in $ bn)

Issuance
2002 58.0% 24.0% 2.0% 16.0% 2 493
2006 35.6% 12.2% 7.1% 45.1% 2 593
2010 71.8% 25.3% 1.2% 1.7% 1 978
2014 72.8% 15.7% 7.5% 3.9% 1 346

Outstanding
2002 59.7% 17.5% 5.6% 17.2% 5 286
2006 45.8% 15.0% 8.3% 30.9% 8 376
2010 59.4% 14.7% 8.1% 17.8% 9 221
2014 68.8% 13.0% 7.2% 11.0% 8 728

TABLE 3.6: Global collateralized debt obligations

Year 2002 2006 2008 2010 2014
Issuance

USD 70.0% 79.1% 40.0% 43.8% 76.2%
Total (in $ bn) 83 521 62 9 141

Outstanding
USD 75.3% 76.2% 70.5% 68.9% 75.5%

Total (in $ bn) 339 1 058 1 356 1 117 811

TABLE 3.7: US asset-backed securities

Year Auto Credit Student Other Total
Loans Cards Loans (in $ bn)

Issuance
2002 36.8% 28.9% 18.6% 15.7% 231
2006 28.1% 34.4% 21.2% 16.2% 289
2010 54.9% 13.0% 11.3% 20.8% 124
2014 50.7% 13.6% 7.1% 28.6% 148

Outstanding
2002 20.8% 32.5% 6.5% 40.2% 902
2006 11.9% 17.7% 12.2% 58.1% 1 643
2010 7.8% 14.7% 16.3% 61.2% 1 476
2014 13.4% 10.2% 16.2% 60.2% 1 336

Source: Securities Industry and Financial Markets Association (2015) & author’s
calculations.
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FIGURE 3.13: Amounts outstanding of credit default swaps (in $ tn)
Source: Bank of International Settlement (2015).

Remark 25 Even if credit securities may be viewed as a bond, their pric-
ing is not straightforward. Indeed, the measure of the default probability and
the recovery depends on the characteristics of the collateral assets (individual
default probabilities and recovery rates), but also on the correlation between
these risk factors. Measuring credit risk of such securities is then a challenge.
Another issue concerns design and liquidity problems faced when packaging
and investing in these assets16 (Duffie and Rahi, 1995; DeMarzo and Duffie,
1999). This explains that credit securities suffered a lot during the 2008 fi-
nancial crisis, even if some were not linked to subprime mortgages. In fact,
securitization markets pose a potential risk to financial stability (Segoviano et
al., 2013). This is a topic we will return to in the chapter 12, which deals with
systemic risk.

3.1.3.2 Credit default swap

A credit default swap (CDS) may be defined as an insurance derivative,
whose the goal is to transfer the credit risk from one party to another. In
a standard contract, the protection buyer makes periodic payments, known
as the premium leg, to the protection seller. In return, the protection seller

16The liquidity issue will be treated in Chapter 6.
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pays a compensation, known as the default leg, to the protection buyer in
the case of a credit event, which can be a bankruptcy, a failure to pay or a
debt restructuring. In its most basic form, the credit event refers to an issuer
(sovereign or corporate) and this corresponds to single-name CDS. If the credit
event relates to a universe of different entities, we speak about multi-name
CDS. In Figure 3.13, we report the evolution of amounts outstanding of CDS
since 2007. The growth of this market was very strong before 2008 with a peak
close to $60 tn. The situation today is different, because the market of single-
name CDS stabilized whereas the market of basket default swaps continues
to fall significantly. Nevertheless, it remains an important OTC market with
a total outstanding around $20 tn.'
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FIGURE 3.14: Cash flows of a single-name credit default swap

In Figure 3.14, we report the mechanisms of a single-name CDS. The
contract is defined by a reference entity (the name), a notional principal N ,
a maturity or tenor T , a payment frequency, a recovery rate R and a coupon
rate17 ccc. From the inception date t to the maturity date T or the default time
τ , the protection buyer pays a fixed payment, which is equal to ccc×N ×∆tm
at the fixing date tm with ∆tm = tm − tm−1. This means that the annual
premium leg is equal to ccc×N . If there is no credit even, the protection buyer
will also pay a total of ccc × N × (T − t). In case of credit even before the
maturity, the protection seller will compensate the protection seller and will
pay (1−R)×N .

Example 24 We consider a credit default swap, whose the notional principal
is $10 mn, the maturity is 5 years and the payment frequency is quarterly.
The credit even is the bankruptcy of a corporate entity A. We assume that the
recovery rate is set to 40% and the coupon rate is equal to 2%.

Because the payment frequency is quarterly, there are 20 fixing dates,
which are 3M, 6M, 9M, 1Y,. . . ,5Y. Each quarter, if the corporate A does
not default. the protection buyer pays a premium, which is approximately

17We will see that the coupon rate ccc is in fact the CDS spread s for par swaps.
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equal to $10mn × 2% × 0.25 = $50 000. If there is no default during the
next five years, the protection buyer will pay a total of $50 000× 20 = $1 mn
whereas the protection seller will pay nothing. Suppose now that the corporate
defaults two years and four months after the CDS inception date. In this case,
the protection buyer will pay $50 000 during 9 quarters and will receive the
protection leg from the protection seller at the default time. This protection
leg is equal to (1− 40%)× $10mn = $6 mn.

To compute the mark-to-market value of a CDS, we use the reduced-form
approach as in the case of bond pricing. If we assume that the premium is not
paid after the default time τ , the stochastic discounted value of the premium
leg is18:

SVt (PL) =
∑
tm≥t

ccc×N × (tm − tm−1)× 1 {τ > tm} × e−
∫ tm
t

rs ds

Using the standard assumptions that the default time is independent of inter-
est rates and the recovery rate, we deduce the present value of the premium
leg as follows:

PVt (PL) = E

 ∑
tm≥t

ccc×N ×∆tm × 1 {τ > tm} × e−
∫ tm
t

rs ds

∣∣∣∣∣∣Ft


=
∑
tm≥t

ccc×N ×∆tm × E [1 {τ > tm}]× E
[
e−

∫ tm
t

rs ds
]

= ccc×N ×
∑
tm≥t

∆tmSt (tm)Bt (tm)

where St (u) is the survival function at time u. If we assume that the default
leg is exactly paid at the default time τ , the stochastic discount value of the
default (or protection) leg is19:

SVt (DL) = (1−R)×N × 1 {τ ≤ T} × e−
∫ τ
t
r(s) ds

It follows that its present value is:

PVt (DL) = E
[

(1−R)×N × 1 {τ ≤ T} × e−
∫ τ
t
rs ds

∣∣∣Ft]
= (1−R)×N × E [1 {τ ≤ T} ×Bt (τ )]

= (1−R)×N ×
∫ T

t

Bt (u) ft (u) du

where ft (u) is the density associated to the survival function St (u). We deduce

18In order to obtain a simple formula, we do not deal with the premium accrued (see
Remark 28 in page 166).

19Here the recovery rate R is assumed to be deterministic.
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that the mark-to-market of the swap is20:

Pt (T ) = PVt (DL)− PVt (PL)

= (1−R)N

∫ T

t

Bt (u) ft (u) du− cccN
∑
tm≥t

∆tmSt (tm)Bt (tm)

= N

(
(1−R)

∫ T

t

Bt (u) ft (u) du− ccc× RPV01

)
(3.5)

where RPV01 =
∑
tm≥t ∆tmSt (tm)Bt (tm) is called the risky PV01 and cor-

responds to the present value of 1 bp paid on the premium leg. The CDS price
is then inversely related to the spread. At the inception date, the present value
of the premium leg is equal to the present value of the default leg meaning
that the CDS spread corresponds to the coupon rate such P buyer

t = 0. We
obtain the following expression:

s =
(1−R)

∫ T
t
Bt (u) ft (u) du∑

tm≥t ∆tmSt (tm)Bt (tm)
(3.6)

The spread s is in fact the fair value coupon rate ccc in such a way that the
initial value of the credit default swap is zero.

We notice that if there is no default risk, this implies that St (u) = 1 and
we get s = 0. In the same way, the spread is also equal to zero if the recovery
rate is set to to 100%. If we assume that the premium is paid continuously,
the formula (3.6) becomes:

s =
(1−R)

∫ T
t
Bt (u) ft (u) du∫ T

t
Bt (u) St (u) du

If the interest rates are equal to zero (Bt (u) = 1) and the default times is
exponential with parameter λ (St (u) = e−λ(u−t) and ft (u) = λe−λ(u−t)), we
get:

s =
(1−R)× λ

∫ T
t
e−λ(u−t) du∫ T

t
e−λ(u−t) du

= (1−R)× λ

If λ is relatively small, we also notice that this relationship can be written as
follows:

s ≈ (1−R)× PD

20Pt is the swap price for the protection buyer. We have then Pbuyer
t (T ) = Pt (T )

P seller
t (T ) = −Pt (T ).
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where PD is the one-year default probability21. This relationship is known as
the credit triangle because it is a relationship between three variables where
knowledge of any two is sufficient to calculate the third (O’Kane, 2008). It
basically states that the CDS spread is approximatively equal to one-year loss.
The spread contains also the same information than the survival function and
is an increasing function of the default probability. It can then be interpreted
as a credit risk measure of the reference entity.

We recall that the first CDS was traded by JP Morgan in 1994 (Augustin et
al., 2014). The CDS market structure has been organized since then, especially
the standardization of the CDS contract. Today, CDS agreements are governed
by 2003 and 2014 ISDA credit derivatives definitions. For instance, settlement
of the CDS contract can be either physical or in cash. In the case of cash
settlement, there is a monetary exchange from the protection seller to the
protection buyer22. In the case of physical settlement, the protection buyer
delivers a bond to the protection seller and receives the notional principal.
Because the price of the defaulted bond is equal to R × N , this means that
the implied mark-to-market of this operation is N −R × N or equivalently
(1−R) × N . Or course, physical settlement is only possible if the reference
entity is a bond or if the credit event is based on the bond default. Whereas
physical settlement was prevailing in the 1990s, most of the settlements are
in cash today. Another standardization concerns the price of CDS. With the
exception of very specific cases23, CDS contracts are quoted in (fair) spread
expressed in bps. In Figures 3.15 and 3.16, we show the evolution of some CDS
spreads for a five-year maturity. We notice the increase of credit spreads since
the 2008 financial turmoil and the default of Lehman Brothers’ bankruptcy,
the sensitivity of German and Italian spreads with respect to the Eurozone
crisis and also the difference in level between the different countries. Indeed,
the spread is globally lower for US than for Germany or Japan. In the case
of Italy, the spread is high and has reached 600 bps in 2012. We observe that
the spread of some corporate entities may be lower than the spread of many
developed countries (see Figure 3.16). This is the case of Walmart, whose
spread is lower than 20 bps since 2014. When a company (or a country) is in
great difficulty, the CDS spread explodes as in the case of Ford in February

21We have:

PD = Pr {τ ≤ t+ 1 | τ ≤ t}
= 1− St (t+ 1)

= 1− e−λ

' λ

For instance, if λ is equal respectively to 5%, 10% and 20%, the one-year default probability
takes the values 4.88%, 9.52% and 18.13%.

22This monetary exchange is equal to (1−R)×N .
23When the default probability is high (larger than 20%), CDS contracts can be quoted

with an upfront meaning that the protection seller is asking an initial amount to enter into
the swap. For instance, it was the case of CDS on Greece in spring 2013.
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FIGURE 3.15: Evolution of some sovereign CDS spreads

FIGURE 3.16: Evolution of some financial and corporate CDS spreads
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2009. CDS spreads can be used to compare the default risk of two entities
in the same sector. For instance, Figure 3.16 shows than the default risk of
Citigroup is higher than this of JPMorgan Chase.

The CDS spread changes over time, but depends also on the maturity or
tenor. This implies that we have a term structure of credit spreads for a given
date t. This term structure is known as the credit spread curve and is noted
st (T ) where T is the maturity time. Figure 3.17 shows the credit curve for
different entities as of 2015-09-17. We notice that the CDS spread increases
with the maturity. This is the most common case for investment-grade (IG)
entities, whose short-term default risk is low, but long-term default risk is
higher. Nevertheless, we observe some distinguishing patterns between these
credit curves. For instance, the credit risk of Germany is lower than the credit
risk of US if the maturity is less than five years, but it is higher in the long
run. There is a difference of 4 bps between Google and Apple on average when
the time-to-maturity is less than 5 years. In the case of 10Y CDS, the spread
of Apple is 90.8 bps whereas it is only 45.75 bps for Google.

FIGURE 3.17: Examples of CDS spread curve as of 2015-09-17

Remark 26 In other cases, the credit curve may be decreasing (for some high
yield corporates) or have a complex curvature (bell-shaped or U-shaped). In
fact, Longstaff et al. (2005) showed that the dynamics of credit default swaps
also depends on the liquidity risk. For instance, the most liquid CDS contract
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is generally the 5Y CDS. The liquidity on the other maturities depends on the
reference entity and other characteristics such as the bond market liquidity.
For example, the liquidity may be higher for short maturities when the credit
risk of the reference entity is very high.

Initially, CDS were used to hedge the credit risk of corporate bonds by
banks and insurance companies. This hedging mechanism is illustrated in
Figure 3.18. We assume that the bond holder buy a protection using a CDS,
whose fixing dates of the premium leg are exactly the same as the coupon
dates of the bond. We also assume that the credit even is the bond default
and the notional principal is equal to the notional of the bond. At each fixing
date tm, the bond holder receives the coupon C (tm) of the bond and pays to
the protection seller the premium s ×N . This implies that the net cash flow
is C (tm)−s×N . If the default occurs, the value of the bond becomes R×N ,
but the protection seller pays to the bond holder the default leg (1−R)×N .
In case of default, the net cash flow is then equal to R×N+(1−R)×N = N ,
meaning that the exposure on the defaultable bond is perfectly hedged. We
deduce that the annualized return R of this hedged portfolio is the difference
between the yield to maturity y of the bond and the annual cost s of the
protection:

R = y − s (3.7)

We recognize a new formulation of Equation (3.4) in page 150. In theory, R
is then equal to the yield to maturity y? of the bond without credit risk.'

&

$

%
t τ time
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FIGURE 3.18: Hedging a defaultable bond with a credit default swap

Since the 2000s, end-users of CDS are banks and securities firms, insurance
firms including pension funds, hedge funds and mutual funds. They continue
to be used as hedging instruments, but they also become financial instruments
to express views about credit risk. In this case, long credit refers to the position
of the protection seller who is exposed to the credit risk, whereas short credit
is the position of the protection buyer who sold the credit risk of the reference



164 Lecture Notes on Risk Management & Financial Regulation

entity. To understand the mark-to-market of such positions, we consider the
initial position at the inception date t of the CDS contract. In this case, the
CDS spread st (T ) verifies that the face value of the swap is equal to zero. Let
us introduce the notation Pt,t′ (T ), which defines the market-to-market of a
CDS position whose inception date is t, valuation date is t′ and maturity date
is T . We have:

P seller
t,t (T ) = P buyer

t,t (T ) = 0

At date t′ > t, the market-to-market price of the CDS is:

P buyer
t,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st (T )× RPV01

)

whereas the value of the CDS spread satisfies the following relationship:

P buyer
t′,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st′ (T )× RPV01

)
= 0

We deduce that the P&L of the protection buyer is:

Πbuyer = P buyer
t,t′ (T )− P buyer

t,t (T )

= P buyer
t,t′ (T )

Using Equation (3.8), we know that P buyer
t′,t′ (T ) = 0 and we obtain:

Πbuyer = P buyer
t,t′ (T )− P buyer

t′,t′ (T )

= N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st (T )× RPV01

)
−

N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st′ (T )× RPV01

)
= N × (st′ (T )− st (T ))× RPV01 (3.8)

This equation highlights the role of the term RPV01 when calculating the P&L
of the CDS position. Because Πseller = −Πbuyer, we distinguish two cases

• If st′ (T ) > st (T ), the protection buyer made a profit, because this short
credit exposure have benefited from the increase of the default risk.

• If st′ (T ) < st (T ), the protection seller made a profit, because the default
risk of the reference entity has decreased.

Suppose that we are in the first case. To realize its P&L, the protection buyer
has three options (O’Kane, 2008):
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1. He could unwind the CDS exposure with the protection seller if the latter
agrees. This implies that the protection seller pays the mark-to-market
P buyer
t,t′ (T ) to the protection buyer.

2. He could hedge the mark-to-market value by selling a CDS on the same
reference entity and the same maturity. In this situation, he continues
to pay the spread st (T ), but he now receives a premium, whose spread
is equal to st′ (T ).

3. He could reassign the CDS contract to another counterparty as illus-
trated in Figure 3.19. The new counterparty (the protection buyer C in
our case) will then pay the coupon rate st (T ) to the protection seller.
However, the spread is st′ (T ) at time t′, which is higher than st (T ). This
is why the new counterparty also pays the mark-to-market P buyer

t,t′ (T )
to the initial protection buyer.

Transfers the agreement

Pays the mark-to-market

Time t Time t′

st (T ) st (T )

(1−R)×N (1−R)×N

Protection
Seller
A

Protection
Buyer
B

Protection
Buyer
C

FIGURE 3.19: An example of CDS offsetting

Remark 27 When the default risk is very high, CDS are quoted with an up-
front24. In this case, the annual premium leg is equal to ccc? × N where ccc? is
a default value25, and the protection buyer has to pay an upfront UFt to the
protection seller defined as follows:

UFt = N

(
(1−R)

∫ T

t

Bt (u) ft (u) du− ccc? × RPV01

)
24It was the case several times for CDS on Greece
25For distressed names, the default coupon rate ccc? is typically equal to 500 bps.
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Remark 28 Until now, we have simplified the pricing of the premium leg in
order to avoid complicating calculations. Indeed, if the default occurs between
two fixing dates, the protection buyer has to pay the premium accrual. For
instance, if τ ∈ ]tm−1, tm[, the accrued premium is equal to ccc×N×(τ − tm−1)
or equivalently to:

AP =
∑
tm≥t

ccc×N × (τ − tm−1)× 1 {tm−1 ≤ τ ≤ tm}

We deduce that the stochastic discount value of the accrued premium is :

SVt (AP) =
∑
tm≥t

ccc×N × (τ − tm−1)× 1 {tm−1 ≤ τ ≤ tm} × e−
∫ τ
t
rs ds

It follows that:

PVt (AP) = ccc×N ×
∑
tm≥t

∫ tm

tm−1

(u− tm−1)Bt (u) ft (u) du

All the previous formulas remain valid by replacing the expression of the risky
PV01 by the following term:

RPV01 =
∑
tm≥t

(
∆tmSt (tm)Bt (tm) +

∫ tm

tm−1

(u− tm−1)Bt (u) ft (u) du

)
(3.9)

Example 25 We assume that the yield curve is generated by the Nelson-
Siegel model with the following parameters: θ1 = 5%, θ2 = −5%, θ3 = 6%
and θ4 = 10. We consider several credit default swaps on the same entity
with quarterly coupons and a notional of $1 mn. The recovery rate R is set
to 40% whereas the default time τ is an exponential random variable, whose
parameter λ is equal to 50 bps. We consider seven maturities (6M, 1Y, 2Y,
3Y, 5Y, 7Y and 10Y) and two coupon rates (10 and 100 bps).

To calculate the prices of these CDS, we use Equation (3.5) with
N = 106, ccc = 10 × 10−4 or ccc = 100 × 10−4, ∆tm = 1/4, R = 0.40,
St (u) = e−50×10−4×(u−t), ft (u) = 50× 10−4 × e−50×10−4×(u−t) and Bt (u) =
e−(u−t)Rt(u) where the zero-coupon rate is given by Equation (3.1). To eval-
uate the integral, we consider a Gauss-Legendre quadrature of 128th order.
By including the accrued premium26, we obtain results reported in Table 3.8.
For instance, the price of the 5Y CDS is equal to $9 527 if ccc = 10× 10−4 and
$− 33 173 if ccc = 100× 10−4. In the first case, the protection buyer has to pay
an upfront to the protection seller, because the coupon rate is too low. In the

26This means that the risky PV01 corresponds to Equation (3.9). We also report results
without taking into account the accrued premium in Table 3.9. We notice that its impact
is limited.



Credit Risk 167

second case, the protection buyer receives the upfront, because the coupon
rate is too high. We also indicates the spread s and the risky PV01. We notice
that the CDS spread is almost constant. This is normal since the default rate
is constant. This is why the CDS spread is approximatively equal to (1− 40%)
or 30 bps. The difference between the several maturities is due to the yield
curve. The risky PV01 is a useful statistic to compute the mark-to-market.
Suppose for instance that the two parties entered in a 7Y credit default swap
of 10 bps spread two years ago. Now, the residual maturity of the swap is five
years, meaning that the mark-to-market of the protection buyer is equal to:

Πbuyer = 106 ×
(
30.08× 10−4 − 10× 10−4

)
× 4.744

= $9 526

We retrieve the 5Y CDS price (subject to rounding error).

TABLE 3.8: Price, spread and risky PV01 of CDS contracts

T
Pt (T ) s RPV01ccc = 10 ccc = 100

1/2 998 −3 492 30.01 0.499
1 1 992 −6 963 30.02 0.995
2 3 956 −13 811 30.04 1.974
3 5 874 −20 488 30.05 2.929
5 9 527 −33 173 30.08 4.744
7 12 884 −44 804 30.10 6.410

10 17 314 −60 121 30.12 8.604

TABLE 3.9: Price, spread and risky PV01 of CDS contracts (without the
accrued premium)

T
Pt (T ) s RPV01ccc = 10 ccc = 100

1/2 999 −3 489 30.03 0.499
1 1 993 −6 957 30.04 0.994
2 3 957 −13 799 30.06 1.973
3 5 876 −20 470 30.07 2.927
5 9 530 −33 144 30.10 4.742
7 12 888 −44 764 30.12 6.406

10 17 319 −60 067 30.14 8.598

Example 26 We consider a variant of Example 25 by assuming that the de-
fault time follows a Gompertz distribution:

St (u) = exp
(
φ
(

1− eγ(u−t)
))
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The parameters φ and γ are set to 5% and 10%.

Results are reported in Table 3.10. In this example, the spread is increasing
with the maturity of the CDS. Until now, we have assumed that we know the
survival function St (u) in order to calculate the CDS spread. However, in
practice, the CDS spread s is a market price and St (u) has to be determined
thanks to a calibration procedure. Suppose for instance that we postulate
that τ is an exponential default time with parameter λ. We can calibrate the
estimated value λ̂ such that the theoretical price is equal to the market price.
For instance, Table 3.10 shows the parameter λ̂ for each CDS. We found
that λ̂ is equal to 51.28 bps for the six-month maturity and 82.92 bps for
the ten-year maturity. We face here an issue, because the parameter λ̂ is not
constant, meaning that we cannot use an exponential distribution to represent
the default time of the reference entity. This is why we generally consider a
more flexible survival function to calibrate the default probabilities from a set
of CDS spreads27.

TABLE 3.10: Calibration of the CDS spread curve using the exponential
model

T
Pt (T ) s RPV01 λ̂

ccc = 10 ccc = 100
1/2 1 037 −3 454 30.77 0.499 51.28

1 2 146 −6 808 31.57 0.995 52.59
2 4 585 −13 175 33.24 1.973 55.34
3 7 316 −19 026 35.00 2.927 58.25
5 13 631 −28 972 38.80 4.734 64.54
7 21 034 −36 391 42.97 6.380 71.44

10 33 999 −42 691 49.90 8.521 82.92

3.1.3.3 Basket default swap

A basket default swap is similar to a credit default swap except that the
underlying is a basket of reference entities rather than one single reference
entity. These products are part of multi-name credit default swaps with col-
lateralized debt obligations.

First-to-default and kth-to-default credit derivatives Let us consider
a credit portfolio with n reference entities, which are referenced by the index
i. With a first-to-default (FtD) credit swap, the credit event occurs the first
time that a reference entity of the credit portfolio defaults. We deduce that

27This problem will be solved later in Section 3.3.3.1 of this chapter.
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the stochastic discounted values of the premium and default legs are28:

SVt (PL) = ccc×N ×
∑
tm≥t

∆tm × 1 {τ 1:n > tm} × e−
∫ tm
t

r(s) ds

and:
SVt (DL) = X × 1 {τ 1:n ≤ T} × e−

∫ τ1:n
t rs ds

where τ i is the default time of the ith reference entity, τ 1:n = min (τ 1, . . . , τn)
is the first default time in the portfolio and X is the payout of the protection
leg:

X =

n∑
i=1

1 {τ 1:n = τi} × (1−Ri)×Ni

= (1−Ri?)×Ni?

In this formula,Ri andNi are respectively the recovery and the notional of the
ith reference entity whereas the index i? = {i : τ i = τ 1:n} corresponds to the
first reference entity that defaults. For instance, if the portfolio is composed
by 10 names and the third name is the first default, the value of the protection
leg will be (1−R3) × N3. Using the same assumptions than previously, we
deduce that the FtD spread is:

sFtD =
E [X × 1 {τ 1:n ≤ T} ×Bt (τ 1:n)]

N
∑
tm≥t ∆tm × S1:n,t (tm)×Bt (tm)

where S1:n,t (u) is the survival function of τ 1:n. If we assume a homogenous
basket (same recovery Ri = R and same notional Ni = N), the previous
formula becomes:

sFtD =
(1−R)

∫ T
t
Bt (u) f1:n,t (u) du∑

tm≥t ∆tmS1:n,t (tm)Bt (tm)
(3.10)

where f1:n,t (u) is the survival function of τ 1:n.
To compute the spread, we use Monte Carlo simulation (or numerical inte-

gration when the number of entities is small29). In fact, the survival function
of τ 1:n is related to the individual survival functions, but also to the depen-
dence between the default times τ 1, . . . , τn. The spread of the FtD is then
a function of default correlations30. If we denote by sCDS

i the CDS spread of
the ith reference, we can show that:

max
(
sCDS
1 , . . . , sCDS

n

)
≤ sFtD ≤

n∑
i=1

sCDS
i (3.11)

28In order to simplify the notations, we do not take into account the accrued premium.
29Laurent and Gregory (2005) provide semi-explicit formulas that are useful for pricing

basket credit swaps.
30This point will be developed in Section 3.3.3 and in Chapter 15 dedicated on Copula

functions.
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When the default times are uncorrelated, the FtD is equivalent to buy the
basket of all credit defaults swaps. In the case of perfect correlations, one
default is immediately followed by the other n − 1 defaults, implying that
the FtD is equivalent to the CDS with the worst spread. In practice, the FtD
spread is therefore located between these two bounds as expressed in Equation
(3.11). From the viewpoint of the protection buyer, a FtD is seen as a hedging
method of the credit portfolio with a lower cost than buying the protection
for all the credits. For example, suppose that the protection buyer would like
to be hedged to the default of the automobile sector. He can buy a FtD on
the basket of the largest car manufacturers in the world, e.g. Volskswagen,
Toyota, Hyundai, General Motors, Fiat Chrysler and Renault. If there is only
one default, the protection buyer is hedged. However, the protection buyer
keeps the risk of multiple defaults, which is a worst-case scenario.

Remark 29 The previous analysis can be extended to kth-to-default swaps.
In this case, the default leg is paid if the kth default occurs before the maturity
date. We then obtain a similar expression as Equation (3.10) by considering
τ k:n in place of τ 1:n.

From a theoretical point of view, it is equivalent to buy the CDS protection
for all the components of the credit basket or to buy all the kth-to-default
swaps. We have therefore the following relationship:

n∑
i=1

sCDS
i =

n∑
i=1

s i:n (3.12)

We see that the default correlation highly impacts the distribution of the
kth-to-default spreads.

Credit default indices Credit derivatives indices31 have been first devel-
oped by J.P. Morgan, Morgan Stanley and iBoxx between 2001 and 2003. A
credit default index (or CDX) is in fact a credit default swap on a basket of
reference entities. As previously, we consider a portfolio with n credit entities.
The protection buyer pays a premium leg with a coupon rate ccc. Every time a
reference entity defaults, the notional is reduced by a factor, which is equal to
1/n. At the same time, the protection buyer receives the portfolio loss between
two fixing dates. The expression of the outstanding notional is then given by:

Nt (u) = N ×

(
1− 1

n

n∑
i=1

1 {τ i ≤ u}

)

At the inception date, we verify that Nt (t) = N . After the first default, the
outstanding notional is equal to N (1− 1/n). After the kth default, its value is

31They are also known as synthetic credit indices, credit default swap indices or credit
default indices.
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N (1− k/n). At time u ≥ t, the cumulative loss of the credit portfolio is:

Lt (u) =
1

n

n∑
i=1

N × (1−Ri)× 1 {τ i ≤ u}

meaning that the incremental loss between two fixing dates is:

∆Lt (tm) = Lt (tm)− Lt (tm−1)

We deduce that the stochastic discounted values of the premium and default
legs are:

SVt (PL) = ccc×
∑
tm≥t

∆tm ×Nt (tm)× e−
∫ tm
t

rs ds

and:
SVt (DL) =

∑
tm≥t

∆Lt (tm)× e−
∫ tm
t

rs ds

We deduce that the spread of the CDX is:

sCDX =
E
[∑

tm≥t ∆Lt (tm)×Bt (tm)
]

E
[∑

tm≥t ∆tm ×Nt (tm)×Bt (tm)
] (3.13)

Remark 30 A CDX is then equivalent to a portfolio of CDS whose each prin-
cipal notional is equal to N/n. Indeed, when a default occurs, the protection
buyer receives N/n × (1−Ri) and stops to pay the premium leg of the de-
faulted reference entity. At the inception date, the annual premium of the CDX
is then equal to the annual premium of the CDS portfolio:

sCDX ×N =

n∑
i=1

sCDS
i × N

n

We deduce that the spread of the CDX is an average of the credit spreads that
compose the portfolio32:

sCDX =
1

n

n∑
i=1

sCDS
i (3.14)

Today, credit default indices are all managed by Markit and have been
standardized. For instance, coupon payments are made on a quarterly basis
(March 20, June 20, September 20, December 20) whereas indices roll every
six months with an updated portfolio33. With respect to the original credit
indices, Markit continues to produces two families:

32In fact, this is an approximation because the payment of the default leg does not exactly
coincide between the CDX and the CDS portfolio.

33See Markit (2014) for a detailed explanation of the indices’ construction.
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• Markit CDX
It focuses on North America and Emerging Markets credit default in-
dices. The three major sub-indices are IG (investment grade), HY (high
yield) and EM (emerging markets). A more comprehensive list is pro-
vided in Table 3.11. Besides these credit default indices, Markit CDX
produces also four other important indices: ABX (basket of ABS),
CMBX (basket of CMBS), LCDX (portfolio of 100 US secured senior
loans) and MCDX (basket of 50 municipal bonds).

• Markit iTraxx
It focuses on Europe, Japan, Asia ex-Japan and Australia (see the list in
Table 3.12). Markit iTraxx also produces LevX (portfolio of 40 European
secured loans), sector indices (e.g. European Financials and Industrials)
and SovX, which corresponds to a portfolio of sovereign issuers. There
are 7 SovX indices: Asia Pacific, BRIC, CEEMEA34, G7, Latin America,
Western Europe and Global Liquid IG.

TABLE 3.11: List of Markit CDX main indices
Index name Description n R
CDX.NA.IG Investment grade entities 125 40%
CDX.NA.IG.HVOL High volatility IG entities 30 40%
CDX.NA.XO Crossover entities 35 40%
CDX.NA.HY High yield entities 100 30%
CDX.NA.HY.BB High yield BB entities 37 30%
CDX.NA.HY.B High yield B entities 46 30%
CDX.EM EM sovereign issuers 14 25%
LCDX Secured senior loans 100 70%
MCDX Municipal bonds 50 80%

TABLE 3.12: List of Markit iTraxx main indices
Index name Description n R
iTraxx Europe European IG entities 125 40%
iTraxx Europe HiVol European HVOL IG entities 30 40%
iTraxx Europe Crossover European XO entities 40 40%
iTraxx Asia Asian (ex-Japan) IG entities 50 40%
iTraxx Asia HY Asian (ex-Japan) HY entities 20 25%
iTraxx Australia Australian IG entities 25 40%
iTraxx Japan Japanese IG entities 50 35%
iTraxx SovX G7 G7 governments 7 40%
iTraxx LevX European leveraged loans 40 40%

Source: Markit (2014).

34Central and Eastern Europe, Middle East and Africa.
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In Table 3.13, we report the spread of some CDX/iTraxx indices. We note
that the spread of the CDX.NA.HY index is on average four times larger than
the spread of the CDX.NAQ.IG index. While spreads of credit default indices
have generally decrease between December 2012 and December 2014, we ob-
serve a reversal in 2015. For instance, the spread of the CDX.NA.IG index is
equal to 93.6 bps in September 2015 whereas it was only equal to 66.3% nine
months ago. We observe a similar increase of 30 bps for the iTraxx Europe
index. For the CDX.NA.HY index, it is more impressive with a variation of
+150 bps in nine months.

TABLE 3.13: Historical spread of CDX/iTraxx indices (in bps)

Date CDX iTraxx
NA.IG NA.HY EM Europe Japan Asia

Dec. 2012 94.1 484.4 208.6 117.0 159.1 108.8
Dec. 2013 62.3 305.6 272.4 70.1 67.5 129.0
Dec. 2014 66.3 357.2 341.0 62.8 67.0 106.0
Sep. 2015 93.6 505.3 381.2 90.6 82.2 160.5

3.1.3.4 Collateralized debt obligations

A collateralized debt obligation (CDO) is another form of multi-name
credit default swaps. It corresponds to a pay-through ABS structure35, whose
securities are bonds linked to a series of tranches. If we consider the example
given in Figure 3.20, they are 4 types of bonds, whose returns depends on the
loss of the corresponding tranche (equity, mezzanine, senior and super senior).
Each tranche is characterized by an attachment point A and a detachment
point D. In our example, we have:

Tranche Equity Mezzanine Senior Super senior
A 0% 15% 25% 35%
D 15% 25% 35% 100%

The protection buyer of the tranche [A,D] pays a coupon rate ccc[A,D] on the
outstanding nominal of the tranche to the protection seller. In return, he
receives the protection leg, which is the loss of the tranche [A,D]. However,
the losses satisfy a payment priority which is the following:

• the equity tranche is the most risky security, meaning that the first losses
hit this tranche alone until the cumulative loss reaches the detachment
point;

• from the time the portfolio loss is larger than the detachment point of
the equity tranche, the equity tranche no longer exists and this is the

35See Figure 3.12 in page 154.



174 Lecture Notes on Risk Management & Financial Regulation

Credit
portfolio

Equity

Mezzanine

Senior

Super
Senior

Assets Liabilities

0− 15%

15− 25%

25− 35%

35− 100%

P
riority

of
p
aym

ent
w
aterfall

FIGURE 3.20: Structure of a collateralized debt obligation

protection seller of the mezzanine tranche, who will pay the next losses
to the protection buyer of the mezzanine tranche;

• the protection buyer of a tranche pays the coupon from the inception
of the CDO until the death of the tranche, when the cumulative loss is
larger than the detachment point of the tranche; moreover, the premium
payments are made on the reduced notional after each credit events of
the tranche.

Each CDO tranche can then be viewed as a CDS with a time-varying notional
principal to define the premium leg and a protection leg, which is paid if the
portfolio loss is between the attachment and detachment points of the tranche.
We can therefore interpret a CDO as a basket default swap, where the equity,
mezzanine, senior and super senior tranches correspond respectively to a first-
to-default, second-to-default, third-to-default and last-to-default swaps.

Let us now see the mathematical framework to price a CDO tranche.
Assuming a portfolio of n credits, the cumulative loss is equal to:

Lt (u) =

n∑
i=1

Ni × (1−Ri)× 1 {τ i ≤ u}
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whereas the loss of the tranche [A,D] is given by36:

L
[A,D]
t (u) = (Lt (u)−A)× 1 {A ≤ Lt (u) ≤ D}+

(D −A)× 1 {Lt (u) > D}

where A and D are the attachment and detachment points expressed in $.
The outstanding nominal of the tranche is therefore:

N
[A,D]
t (u) = (D −A)− L[A,D]

t (u)

This notional principal decreases then by the loss of the tranche. At the in-
ception of the CDO, N [A,D]

t (t) is equal to the tranche width (D −A). At the
maturity date T , we have:

N
[A,D]
t (T ) = (D −A)− L[A,D]

t (T )

=

 (D −A) if Lt (T ) ≤ A
(Lt (T )−A) if A < Lt (T ) ≤ D
0 if Lt (T ) > D

We deduce that the stochastic discounted values of the premium and default
legs are:

SVt (PL) = ccc[A,D] ×
∑
tm≥t

∆tm ×N [A,D]
t (tm)× e−

∫ tm
t

rs ds

and:
SVt (DL) =

∑
tm≥t

∆L
[A,B]
t (tm)× e−

∫ tm
t

rs ds

We deduce that the spread of the CDO tranche is37:

s [A,D] =
E
[∑

tm≥t ∆L
[A,D]
t (tm)×Bt (tm)

]
E
[∑

tm≥t ∆tm ×N [A,D]
t (tm)×Bt (tm)

] (3.15)

We obviously have the following inequalities:

sEquity > sMezzanine > sSenior > sSuper senior

As in the case of kth-to-default swaps, the distribution of these tranche spreads
highly depend on the default correlation 38. Depending on the model and

36Another expression is:

L
[A,D]
t (u) = min

(
D −A, (Lt (u)−A)+

)
37This formula is obtained by assuming no upfront and accrued interests.
38See Section 15.5.2 in Chapter 15.
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the parameters, we can therefore promote the protection buyer/seller of one
specific tranche with respect to the other tranches.

When collateralized debt obligations emerged in the 1990s, they were used
to transfer credit risk from the balance sheet of banks to investors (e.g. in-
surance companies). They were principally portfolios of loans (CLO) or asset-
backed securities (ABS CDO). With these balanced-sheet CDO, banks could
recover regulatory capital in order to issue new credits. In the 2000s, a new
type of CDO was created by considering CDS portfolios as underlying assets.
These synthetic CDO are also called arbitrage CDO, because they have used
by investors to express their market views on credit.

The impressive success of CDO with investors before the 2008 financial
crisis is due to the rating mechanism of tranches. Suppose that the underlying
portfolio is composed of BB rated credits. It is obvious that the senior and
super senior tranches will be rated higher than BB, because the probability
that these tranches will be impacted is very low. The slicing approach of CDO
enables then to create high-rated securities from medium or low-rated debts.
Since the appetite of investors for AAA and AA rated bonds was very impor-
tant, CDO were solutions to meet this demand. Moreover,this lead to rating
method in order to provide an attractive spread. This explains that most of
AAA-rated CDO tranches promised a return higher than AAA-rated sovereign
and corporate bonds. In fact, the 2008 financial crisis has demonstrated that
many CDO tranches were more risky than expected, because the riskiness of
the assets were underestimated39.

TABLE 3.14: List of Markit credit default tranches
Index name Tranche
CDX.NA.IG 0− 3 3− 7 7− 15 15− 100
CDX.NA.HY 0− 10 10− 15 15− 25 25− 35 35− 100
LCDX 0− 5 5− 8 8− 12 12− 15 15− 100

iTraxx Europe 0− 3 3− 6 6− 9 9− 12 12− 22 22− 100

iTraxx Europe XO 0− 10 10− 15 15− 25 25− 35 35− 100
iTraxx Asia 0− 3 3− 6 6− 9 9− 12 12− 22
iTraxx Australia 0− 3 3− 6 6− 9 9− 12 12− 22
iTraxx Japan 0− 3 3− 6 6− 9 9− 12 12− 22

Source: Markit (2014).

For some years now, CDO have been created using credit default indices
as the underlying portfolio. For instance, Table 3.14 provides the list of avail-
able tranches on Markit indices40. We notice that attachment and detachment
points differ from one index to another index. The first tranche always indi-

39More details of the impact of the securitization market on the 2008 financial crisis are
developed in Chapter 12 dedicated to systemic risk.

40They are also called credit default tranches (CDT).
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cates the equity tranche. For IG underlying assets, the notional corresponds
to the first 3% losses of the portfolio, whereas the detachment point is higher
for crossover or high yield assets. We also notice that some senior tranches
are not traded (Asia, Australia and Japan). These products are mainly used
in correlation trading and also served as benchmarks for all the other OTC
credit debt obligations.

3.2 Capital requirements
This section deals with regulatory aspects of credit risk. From an historical

point of view, this is the first risk, which are required regulatory capital before
market risk. Nevertheless, the development of credit risk management is more
recent and was accelerated with the Basel II Accord. Before presenting the
different approaches for calculating capital requirements, we need to define
more precisely what credit risk is.

It is the risk of loss on a debt instrument resulting from the failure of the
borrower to make required payments. We generally distinguish two types of
credit risk. The first one is the default risk , which arises when the borrower
is unable to pay the principal or interests. An example is a student loan or
a mortgage loan. The second type is the downgrading risk , which concerns
debt securities. In this case, the debt holder may face a loss, because the price
of the debt security is directly related to the credit risk of the borrower. For
instance, the price of the bond may go down because the credit risk of the
issuer increases and even if the borrower does not default. Of course, default
risk and downgrading risk are highly correlated, because it is rare that a
counterparty suddenly defaults without downgrading of its credit rating.

To measure credit risk, we first eed to define the default of the obligor.
BCBS (2006) provides the following standard definition:

“A default is considered to have occurred with regard to a partic-
ular obligor when either or both of the two following events have
taken place.

• The bank considers that the obligor is unlikely to pay its
credit obligations to the banking group in full, without re-
course by the bank to actions such as realizing security (if
held).

• The obligor is past due more than 90 days on any material
credit obligation to the banking group. Overdrafts will be con-
sidered as being past due once the customer has breached an
advised limit or been advised of a limit smaller than current
outstandings” (BCBS, 2006, page 100).
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This definition contains both objective elements (when a payment has been
missed or delayed) and subjective elements (when a loss becomes highly prob-
able). However, this last case generally corresponds to an extreme situation,
where a specific provisioning is declared. The Basel definition of default covers
then two types of credit: debts under litigation and doubtful debts.

Downgrading risk is more difficult to define. If the counterparty is rated by
an agency, it can be measured by a single or multi-notch downgrade. However,
it is not always the case in practice, because the credit quality decreases before
the downgrade announcement. A second measure is to consider a market-based
approach by using CDS spreads. However, we notice that the two methods
concern counterparties, which are able to issue debt securities, in particular
bonds. For instance, the concept of downgrading risk is difficult to apply for
retail assets.

The distinction between default risk and downgrading risk has an impact
about the credit risk measure. For loans and debt-like instruments that can
not be traded in a market, the horizon time for managing credit risk is the
maturity of the credit. Contrary to this hold-to-maturity approach, the horizon
time for managing debt securities is shorter, typically one year. In this case,
the big issue is not to manage the default, but the mark-to-market of the
credit exposure.

3.2.1 The Basel I framework

According to Tarullo (2008), two explanatory factors was behind the Basel
I Accord. The first motivation was to increase capital levels of internationally
banks, which were very low at that time and has continuously decreased since
many years. For instance, the ratio of equity capital to total assets41 was
5.15% in 1970 and only 3.83% in 1981 for the 17 largest US banks. In 1988,
this capital ratio was equal to 2.55% on average for the five largest bank in
the world. The second motivation concerned the distortion risk of competition
resulting from heterogeneous national capital requirements. One point that
was made repeatedly, especially by US bankers, was the growth of Japanese
banks. In Table 3.15, we report the ranking of the 10 world’s largest banks in
1981 and 1988. While there is only one Japanese bank in the top 10 in 1981,
nine Japanese banks are included in the ranking seven years later. In this
context, the underlying idea of the Basel I Accord was then to increase capital
requirements and harmonize national regulations for international banks.

The Basel I Accord provides a detailed definition of bank capital C and
risk weighted assets RWA. We recall that tier one capital consists mainly
of common stock and disclosed reserves, whereas tier two capital includes
undisclosed reserves, general provisions, hybrid debt capital instruments and
subordinated term debt. Risk weighted assets are simply calculated as the
product of the asset notional (or the exposure at default (EAD)) by a risk

41All the statistics of this section comes from Chapters 2 and 3 of Tarullo (2008).
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TABLE 3.15: World’s largest banks in 1981 and 1988

1981 1988
Bank Assets Bank Assets

1 Bank of America (US) 115.6 Dai-Ichi Kangyo (JP) 352.5
2 Citicorp (US) 112.7 Sumitomo (JP) 334.7
3 BNP (FR) 106.7 Fuji (JP) 327.8
4 Crédit Agricole (FR) 97.8 Mitsubishi (JP) 317.8
5 Crédit Lyonnais (FR) 93.7 Sanwa (JP) 307.4
6 Barclays (UK) 93.0 Industrial Bank (JP) 261.5
7 Société Générale (FR) 87.0 Norinchukin (JP) 231.7
8 Dai-Ichi Kangyo (JP) 85.5 Crédit Agricole (FR) 214.4
9 Deutsche Bank (DE) 84.5 Tokai (JP) 213.5

10 National Westminster (UK) 82.6 Mitsubishi Trust (JP) 206.0

Source: Tarullo (2008).

weight (RW). Table 3.16 shows the different values of RW with respect to
the category of the asset. For off-balance-sheet assets, BCBS (2008) define
credit conversion factor (CCF) for converting the amount E of a credit line
or off-balance-sheet asset to an exposure at default:

EAD = E × CCF

The CCF values are 100% for direct credit substitutes (standby letters of
credit), sale and repurchase agreements, forward asset purchases, 50% for
standby facilities and credit lines with an original maturity of over one year,
note issuance facilities and revolving underwriting facilities, 20% for short-
term self-liquidating trade-related contingencies and 0% for standby facilities
and credit lines with an original maturity of up to one year. The above frame-
work is used to calculate the Cooke ratio, which is in fact a set of two capital
ratios. The core capital ratio includes only tier one capital whereas the total
capital ratio considers both tier one C1 and tier two C2 capital:

Tier 1 ratio =
C1

RWA
≥ 4%

Tier 2 ratio =
C1 + C2

RWA
≥ 8%

Example 27 The assets of the bank are composed of $100 mn of US treasury
bonds, $20 mn of Mexico government bonds dominated in US Dollar, $20
mn of Argentine debt dominated in Argentine Peso, $500 mn of residential
mortgage, $500 mn of corporate loans, $20 of non-used standby facilities for
OECD governments and $100 of retail credit lines, which are decomposed as
follows: $40 mn are used and 70% of non-used credit lines have a maturity
higher than one year.
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TABLE 3.16: Risk weights by category of on-balance-sheet asset

RW Instruments

0%

Cash
Claims on central governments and central banks denominated in
national currency and funded in that currency
Other claims on OECD central governments and central banks
Claims† collateralized by cash of OECD government securities

20%

Claims† on multilateral development banks
Claims† on banks incorporated in the OECD and claims guaranteed
by OECD incorporated banks
Claims† on securities firms incorporated in the OECD subject to
comparable supervisory and regulatory arrangements
Claims† on banks incorporated in countries outside the OECD with
a residual maturity of up to one year
Claims† on non-domestic OECD public-sector entities
Cash items in process of collection

50% Loans fully secured by mortgage on residential property

100%

Claims on the private sector
Claims on banks incorporated outside the OECD with a residual
maturity of over one year
Claims on central governments outside the OECD and non denom-
inated in national currency
All other assets

†or guaranteed by these entities.

Source: BCBS (1988).

For each asset, we calculate RWA by choosing the right risk weight and
credit conversion factor for off-balance-sheet items. We obtain the results be-
low. The risk-weighted assets of the bank are then equal to $831 mn. We
deduce that the required capital is $33.24 mn for tier one.

Balance Asset E CCF EAD RW RWASheet

On

US bonds 100 0% 0
Mexico bonds 20 100% 20
Argentine debt 20 0% 0
Home mortgage 500 50% 250
Corporate loans 500 100% 500
Credit lines 40 100% 40

Off
Standby facilities 20 100% 20 0% 0
Credit lines (> 1Y) 42 50% 21 100% 21
Credit lines (≤ 1Y) 18 0% 0 100% 0

Total 831
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3.2.2 The Basel II standardized approach

The main criticism of the Cooke ratio is the lack of economic rationale
with respect to risk weights. Indeed, most of claims have a 100% risk weight
and do not reflect the real credit risk of the borrower. Other reasons have been
given to justify a reformulation of capital requirements for credit risk with the
goal to:

• obtain a better credit risk measure by taking into account the default
probability of the counterparty;

• avoid regulatory arbitrage, in particular by using credit derivatives;

• have a more coherent framework that supports credit risk mitigation.

3.2.2.1 Standardized risk weights

In Basel II, the default probability is the key parameter to define risk
weights. For the standardized approach (SA), they depend directly on external
ratings whereas they are based on internal rating for the IRB approach. Table
3.17 shows the new matrix of risk weights, when we consider the Standard
& Poor’s rating system42. We notice that there are four main categories of
claims43: sovereigns, banks, corporates and retail portfolios.

TABLE 3.17: Risk weights of the SA approach (Basel II)

Rating
AAA A+ BBB+ BB+ CCC+
to to to to to NR

AA− A− BBB− B− C
Sovereigns 0% 20% 50% 100% 150% 100%

Banks
1 20% 50% 100% 100% 150% 100%
2 20% 50% 50% 100% 150% 50%

2 ST 20% 20% 20% 50% 150% 20%

Corporates BBB+ to BB− B+ to C
20% 50% 100% 150% 100%

Retail 75%
Residential mortgages 35%
Commercial mortgages 100%

The sovereigns category include central governments and central banks,
whereas non-central public sector entities are treated with the banks category.
We note that there are two options for the latter, whose choice is left to the

42NR stands for non-rated entities.
43The regulatory framework is more comprehensive by considering three other categories

(public sector entities, multilateral development banks and securities firms), which are
treated as banks. For all other assets, the standard risk weight is 100%.
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discretion of the national supervisors44. Under the first option, the risk weight
depends on the rating of the country, where the bank is located. Under the
second option, this is the rating of the bank that determines the risk weight,
which is more more favorable for short-term claims (three months or less).
The risk weight of a corporate is calculated with respect to the rating of
the entity, but uses a slightly different breakdown of ratings than the second
option of the banks category. Finally, the Basel Committee uses lower levels for
retail portfolios than those provided in the Basel I Accord. Indeed, residential
mortgages and retail loans are now weighted at 35% and 75% instead of 50%
and 100% previously. Other comparisons between Basel I and Basel II (with
the second option for banks) are shown in Table 3.18.

TABLE 3.18: Comparison of risk weights between Basel I and Basel II

Entity Rating Maturity Basel I Basel II
Sovereign (OECD) AAA 0% 0%
Sovereign (OECD) A- 0% 20%
Sovereign BBB 100% 50%
Bank (OECD) BBB 2Y 20% 50%
Bank BBB 2M 100% 20%
Corporate AA+ 100% 20%
Corporate BBB 100% 100%

The SA approach is based on external ratings and then depends on rat-
ing agencies. The three most famous are Standard & Poor’s, Moody’s and
Fitch. However, they cover only large companies. This is why banks will also
consider rating agencies specialized in a specific sector or a given countries45.
Of course, rating agencies must be first registered and certified by national
regulators in order to be used by the banks. The validation process consists
of two steps, which are the assessment of the six required criteria (objectiv-
ity, independence, transparency, disclosure, resources and credibility) and the
mapping process between the ratings and the Basel matrix of risk weights.

Table 3.19 shows the rating systems of S&P, Moody’s and Fitch, which
are very similar. Examples of S&P’s rating are given in Tables 3.20, 3.21
and 3.22. We note that the rating of many sovereign counterparties has been
downgrating by at least one notch, except China which has now a rating
better than before the 2008 financial crisis. For some countries, the rating
in local currency is different than the rating in foreign currency, for instance
Argnetina, Brazil, Russia and Ukraine46. We observe the same evolution for

44The second option is more frequent and is implemented in Europe, US and Japan for
instance.

45For instance, banks may use Japan Credit Rating Agency Ltd for Japanese public
and corporate entities, DBRS Ratings Limited for bond issuers, Cerved Rating Agency for
Italian small and medium-sized enterprises, etc..

46An SD rating is assigned in case of selective default of the obligor.
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TABLE 3.19: Credit rating system of S&P, Moody’s and Fitch
Prime High Grade Upper

Maximum Safety High Quality Medium Grade
S&P/Fitch AAA AA+ AA AA− A+ A A−
Moody’s Aaa Aa1 Aa2 Aa3 A1 A2 A3

Lower Non Investment Grade
Medium Grade Speculative

S&P/Fitch BBB+ BBB BBB− BB+ BB BB−
Moody’s Baa1 Baa2 Baa3 Ba1 Ba2 Ba3

Highly Substantial In Poor Extremely
Speculative Risk Standing Speculative

S&P/Fitch B+ B B− CCC+ CCC CCC− CC
Moody’s B1 B2 B3 Caa1 Caa2 Caa3 Ca

TABLE 3.20: Examples of country’s S&P rating

Country Local currency Foreign currency
Jun. 2009 Oct. 2015 Jun. 2009 Oct. 2015

Argentina B- CCC+ B- SD
Brazil BBB+ BBB- BBB- BB+
China A+ AA- A+ AA-
France AAA AA AAA AA
Italy A+ BBB- A+ BBB-
Japan AA A+ AA A+
Russia BBB+ BBB- BBB BB+
Spain AA+ BBB+ AA+ BBB+
Ukraine B- CCC+ CCC+ SD
US AAA AA+ AA+ AA+

Source: Standard & Poor’s, www.standardandpoors.com.

TABLE 3.21: Examples of bank’s S&P rating

Bank Oct. 2001 Jun. 2009 Oct. 2015
Barclays Bank PLC AA AA- A-
Credit Agricole S.A. AA AA- A
Deutsche Bank AG AA A+ BBB+
International Industrial Bank CCC+ BB-
JPMorgan Chase & Co. AA- A+ A
UBS AG AA+ A+ A

Source: Standard & Poor’s, www.standardandpoors.com.
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TABLE 3.22: Examples of corporate’s S&P rating

Corporate Jul. 2009 Oct. 2015
Danone A- A-
Exxon Mobil Corp. AAA AAA
Ford Motor Co. CCC+ BBB-
General Motors Corp. D BBB-
L’Oreal S.A. NR NR
Microsoft Corp. AAA AAA
Nestle S.A. AA AA
The Coca-Cola Co. A+ AA
Unilever PLC A+ A+

Source: Standard & Poor’s, www.standardandpoors.com.

banks and it is now rare to find a bank with a AAA rating. This is not the case
of corporate counterparties, which present more stable ratings across time.

Remark 31 Credit conversion factors for off-balance sheet items are similar
to those defined in the original Basel Accord. For instance, any commitments
that are unconditionally cancelable receives a 0% CCF. A CCF of 20% (resp.
50%) is applied to commitments with an original maturity up to one year
(resp. higher than one year). For Revolving underwriting facilities, the CCF
is equal to 50% whereas it is equal to 100% for other off-balance sheet items
(e.g. direct credit substitutes, sale and repurchase agreements, forward asset
purchases).

3.2.2.2 Credit risk mitigation

Credit risk mitigation (CRM) refers to the various techniques used by
banks for reducing the credit risk. These methods allow to decrease the credit
exposure or to increase the recovery in case of default. The most common
approaches are collateralized transactions, guarantees, credit derivatives and
netting agreements.

Collateralized transactions In such operations, the credit exposure of
the bank is partially hedged by collateral posted by the counterparty. BCBS
(2006) defines then the following eligible instruments:

1. Cash and comparable instruments;

2. Gold;

3. Debt securities which are rated AAA to BB- when issued by sovereigns
or AAA to BBB- when issued by other entities or at least A-3/P-3 for
short-term debt instruments;
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4. Debt securities which are not rated but fulfill certain criteria (senior
debt issued by banks, listed on a recognisee exchange and sufficiently
liquid);

5. Equities that are included in a main index;

6. UCITS and mutual funds, whose assets are eligible instruments and
which offer a daily liquidity;

7. Equities which are listed on a recognized exchange and UCITS/mutual
funds which include such equities.

The bank has the choice between two approaches to take into account
collateralized transactions. In the simple approach47, the risk weight of the
collateral (with a floor of 20%) is applied to the market value of the collat-
eral where the non-hedged exposure (E − C) receives the risk weight of the
counterparty:

RWA = (EAD−C)× RW +C ×max (RWC , 20%) (3.16)

where EAD is the exposure at default, C is the market value of the collat-
eral, RW is the risk weight appropriate to the exposure and RWC is the risk
weight of the collateral. The second method, called the comprehensive ap-
proach, is based on haircuts. The risk weighted asset after risk mitigation is
RWA = RW×EAD? where EAD? is the modified exposure at default defined
as follows:

EAD? = max (0, (1 +HE)× EAD− (1−HC −HFX)× C) (3.17)

where HE is the haircut applied to the exposure, HC is the haircut applied to
the collateral and HFX is the haircut for currency risk. Table 3.23 gives the
standard supervisory values of haircuts. If the bank uses an internal model to
calculate haircuts, they must be based on a value-at-risk with a 99% confi-
dence level and an holding period which depends on the collateral type and
the frequency of remargining. The standard supervisory haircuts have been
calibrated by assuming daily mark-to-market, daily remargining and a 10-
business day holding period.

Exercise 28 We consider a 10-year credit of $100 mn to a corporate rated
A. The credit is guaranteed by five collateral instruments: a cash deposit ($2
mn), a gold deposit ($5 mn), a sovereign bond rated AA with a 2-year residual
maturity ($15 mn) and repurchase transactions on Microsoft stocks ($20 mn)
and Wirecard48 stocks ($20 mn).

47Collateral instruments (7) are not eligible for this approach.
48Wirecard is a German financial company specialized in payment processing and issuing

services. The stock belongs to the MSCI Small Cap Europe Index.
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TABLE 3.23: Standardized supervisory haircuts for collateralized transac-
tions

Rating Residual Sovereigns OthersMaturity
0−1Y 0.5% 1%

AAA to AA− 1−5Y 2% 4%
5Y+ 4% 8%

0−1Y 1% 2%
A+ to BBB− 1−5Y 3% 6%

5Y+ 6% 12%

BB+ to BB− 15%

Cash 0%
Gold 15%
Main index equities 15%
Equities listed on a recognized exchange 25%

FX risk 8%

Before credit risk mitigation, the risk weight asset is equal to:

RWA = 100× 50% = $50 mn

If we consider the simple approach, the repurchase transaction on Wirecard
stocks is not eligible, because it does not fall within categories (1)-(6). The
risk weight asset becomes49:

RWA = (100− 2− 5− 15− 20)× 50% + (2 + 5 + 15 + 20)× 20%

= $37.40 mn

The repurchase transaction on Wirecard stocks is eligible in the comprehensive
approach, because these equity stocks are traded in Börse Francfurt. The
haircuts are 15% for gold, 2% for the sovereign bond and 15% for Microsoft
stocks50. For Wirecard stocks, a first haircut of 25% is applied because these
instruments belong to the category (7) and a second haircut of 8% is applied
because there is a foreign exchange risk. The adjusted exposure at default is
then equal to:

EAD? = (1 + 8%)× 100− 2− (1− 15%)× 5− (1− 2%)× 15−
(1− 15%)× 20− (1− 25%− 8%)× 20

= $73.65 mn

It follows that:
RWA = 73.65× 50% = $36.82 mn

49The floor of 20% is applied to the cash, gold and sovereign bond collateral instruments.
The risk weight for Microsoft stocks is 20% because the rating of Microsoft is AAA.

50Because Microsoft belongs to the S&P 500 index, which is a main equity index.
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Guarantees and credit derivatives Banks can use these credit protec-
tion instruments if then are direct, explicit, irrevocable and unconditional. In
this case, banks use the simple approach given by Equation (3.16). The case
of credit default tranches is covered by rules described in the securitization
framework.

Maturity mismatches A maturity mismatch occurs when the residual ma-
turity of the hedge is less than that of the underlying asset. In this case, the
bank uses the following adjustment:

CA = C × min (TG, T, 5)− 0.25

min (T, 5)− 0.25
(3.18)

where T is the residual maturity of the exposure and TC is the residual ma-
turity of the collateral (or guarantee).

Exercise 29 The bank A has granted a credit of $30 mn to a corporate com-
pany B, which is rated BB. In order to hedge the default risk, the bank A buy
$20 mn of a 3-year CDS protection on B to the bank C, which is rated A+.

If the residual maturity of the credit is lower than 3 years, we obtain:

RWA = (30− 20)× 100% + 20× 50% = $20 mn

If the residual maturity is higher than 3 years, we first have to calculate the
adjusted value of the guarantee. Assuming that the residual maturity is 4
years, we have:

GA = 20× min (3, 4, 5)− 0.25

min (4, 5)− 0.25
= $14.67 mn

It follows that:

RWA = (30− 14.67)× 100% + 14.67× 50% = $22.67 mn

3.2.3 The Basel II internal ratings-based approach

The completion of the internal ratings-based (IRB) approach was a com-
plex task, because it required many negotiations between regulators, banks
and politics. Tarullo (2008) points out that the publication of the first con-
sultative paper (CP1) in June 1999 was both “anticlimactic and contentious”.
The paper is curiously vague without a precise direction. The only tangible
proposal is the use of external ratings. The second consultative paper is re-
leased in January 2001 and includes in particular the IRB approach, which
has been essentially developed by US members of the Basel Committee with
the support of large international banks. The press release dated 16 January
2001 indicated that the Basel Committee would finalize the New Accord by
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the end of 2001, for an implementation in 2004. However, it has taken much
longer than originally anticipated and the final version of the New Accord was
published in June 2004 and implemented from December 200651. The main
reason is the difficulty of calibrating the IRB approach in order to satisfy a
large part of international banks. The IRB formulas of June 2004 are signif-
icantly different from the original ones and reflect compromises between the
different participants without really being satisfactory.

3.2.3.1 The general framework

Contrary to the standardized approach, the IRB approach is based on
internal rating systems. With such a method, the objectives of the Basel
Committee are to propose a more sensitive credit risk measure and define
a common basis between internal credit risk models. The IRB approach must
been seen as an external credit risk model with internal parameters. There-
fore, it is not an internal model, but a first step to harmonize the internal risk
management practices by focusing on the main risk components, which are:

• the exposure at default (EAD);

• the probability of default (PD);

• the loss given default (LGD);

• the effective maturity (M).

The exposure at default is defined as the outstanding debt at the time of
default. For instance, it is equal to the principal amount for a loan. The loss
given default is the expected percentage of exposure at default that is lost if the
debtor defaults. At first approximation, one can consider that LGD ' 1−R.
While EAD is expressed in $, LGD is measured in %. For example, if EAD
is equal to $10 mn and LGD is set to 70%, the expected loss due to default
is equal to $7 mn. The probability of default measures the default risk of
the debtor. In Basel II, the horizon time of PD is set to one year. When the
duration of the credit is not equal to one year, one has to specify its effective
maturity M. This is the combination of the one-year default probability PD
and the effective maturity M that measure the default risk of the debtor until
the duration of the credit.

In this approach, the credit risk measure is the sum of individual risk
contributions:

R (w) =

n∑
i=1

RCi

where RCi is a function of the four risk components:

RCi = fIRB (EADi,LGDi,PDi,Mi)

51See Chapter 4 entitled “Negotiating Basel II” of Tarullo (2008) for a comprehensive
story of the Basel II Accord.
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and fIRB is the IRB fomula. In fact, there are two IRB methodologies. In
the foundation IRB approach (FIRB), banks use their internal estimates of
PD whereas the values of the other components (EAD, LGD and M) are set
by regulators. Banks that adopt the advanced IRB approach (AIRB) may
calculate all the four parameters (PD, EAD, LGD and M) using their own
internal models and not only the probability of default. The mechanism of the
IRB approach is then the following:

• a classification of exposures (sovereigns, banks, corporates, retail port-
folios, etc.);

• for each credit i, the bank estimates the probability of default PDi;

• it uses the standard regulatory values of the other risk components
(EADi, LGDi and Mi) or estimates them in the case of AIRB;

• the bank calculate then the risk weighted asset RWAi of the credit by
applying the right IRB formula fIRB to the risk components;

Internal ratings are central to the IRB approach. Table 3.24 gives an example
of internal rating system, where risk increases with the number grade (1, 2,
3, etc.). Another approach is to consider alphabetical letter grades52. A third
approach is to use an internal rating scale similar to that of S&P53.

3.2.3.2 The credit risk model of Basel II

Decomposing the value-at-risk into risk contributions BCBS (2004)
used the Merton-Vasicek model (Merton, 1974; Vasicek 2002) to derive the
IRB formulas. In this framework, the loss portfolio is equal to:

L =

n∑
i=1

wi × LGDi×1 {τ i ≤ Ti} (3.19)

where wi and Ti are the exposure at default and the residual maturity of the
ith credit. We assume that the loss given default LGDi is a random variable
and the default time τ i depends on a set of risk factors X, whose probability
distribution is denoted H. Let pi (X) be the conditional default probability.
It follows that the (unconditional or long-term) default probability is:

pi = EX [1 {τ i ≤ Ti}]
= EX [pi (X)]

We also introduce the notation Di = 1 {τ i ≤ Ti}, which is the default in-
dicator function. Conditionally to the risk factors, Di is a Bernoulli random

52For instance, the rating system of Crédit Agricole is: A+, A, B+, B, C+, C, C-, D+, D,
D-, E+, E and E- (source: Credit Agricole, Annual Financial Report 2014, page 201).

53This is the case of JPMorgan Chase & Co. (source: JPMorgan Chase & Co., Annual
Report 2014, page 104).
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TABLE 3.24: Example of Internal Rating Systems

Degree
of risk

Borrower
Rating Definition category by

self-assessment

1 No essential
risk

Extremely high degree of certainty of
repayment

Normal

2 Negligible
risk High degree of certainty of repayment

3 Some risk Sufficient certainty of repayment

4
A
B
C

Better
than

average

There is certainty of repayment but
substantial changes in the
environment in the future may have
some impact on this uncertainty

5
A
B
C

Average

There are no problems foreseeable in
the future, but a strong likelihood of
impact from changes in the
environment

6
A

Tolerable
There are no problems foreseeable in
the future, but the future cannot be
considered entirely safe

B
C

7
Lower
than

average

There are no problems at the current
time but the financial position of the
borrower is relatively weak

8
A

B

Needs
preventive

management

There are problems with lending
terms or fulfilment, or the borrower’s
business conditions are poor or
unstable, or there are other factors
requiring careful management

Needs
attention

9 Needs
serious

management

There is a high likelihood of
bankruptcy in the future

In danger
of bankruptcy

10 I The borrower is in serious financial
straits and “effectively bankrupt”

Effectively
bankruptcy

II The borrower is bankrupt Bankrupt

Source: Ieda, Marumo and Yoshiba (2000).

variable with probability pi (X). If we consider the standard assumption that
the loss given default is independent from the default time and also assume
that the default times are conditionally independent54, we obtain:

E [L | X] =

n∑
i=1

wi × E [LGDi]× E [Di | X]

=

n∑
i=1

wi × E [LGDi]× pi (X) (3.20)

54The default times are not independent, because they depend on the common risk factors
X. However, conditionally to these factors, they become independent because idiosyncratic
risk factors are not correlated.
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and55:

σ2 (L | X) = E
[
L2 | X

]
− E2 [L | X]

=

n∑
i=1

w2
i ×

(
E
[
LGD2

i

]
× E

[
D2
i | X

]
− E2 [LGDi]× p2

i (X)
)

We have E
[
D2
i | X

]
= pi (X) and E

[
LGD2

i

]
= σ2 (LGDi) + E2 [LGDi]. We

deduce that:

σ2 (L | X) =

n∑
i=1

w2
i ×Ai (3.21)

with:

Ai = E2 [LGDi]× pi (X)× (1− pi (X)) + σ2 (LGDi)× pi (X)

BCBS (2004) assumes that the portfolio is infinitely fine-grained, which means
that there is no concentration:

lim
n→∞

max
wi∑n
i=1 wi

= 0 (3.22)

In this case, Gordy (2003) shows that the conditional distribution of L de-
generates to its conditional expectation E [L | X]. The intuition of this result
is given by Wilde (2001). He considers a fine-grained portfolio equivalent to
the original portfolio by replacing the original credit i by m credits with the
same default probability pi, the same loss given default LGDi but an expo-
sure at default divided by m. Let Lm be the loss of the equivalent fine-grained
portfolio. We have:

E [Lm | X] =

n∑
i=1

 m∑
j=1

wi
m

× E [LGDi]× E [Di | X]

=

n∑
i=1

wi × E [LGDi]× pi (X)

= E [L | X]

and:

σ2 (Lm | X) =

n∑
i=1

 m∑
j=1

w2
i

m2

×Ai
=

1

m

n∑
i=1

w2
i ×Ai

=
1

m
σ2 (Lm | X)

55Because the conditional covariance between Di and Dj is equal to zero.
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When m tends to ∞, we obtain the infinitely fine-grained portfolio. We note
that E [L∞ | X] = E [L | X] and σ2 (L∞ | X) = 0. Conditionally to the risk
factors X, the portfolio loss L∞ is equal to the unconditional mean E [L | X].
The associated probability distribution F is then:

F (`) = Pr {L∞ ≤ `}
= Pr {E [L | X] ≤ `}

= Pr

{
n∑
i=1

wi × E [LGDi]× pi (X) ≤ `

}

Let g (x) be the function
∑n
i=1 wi × E [LGDi]× pi (x). We have:

F (`) =

∫
· · ·
∫
1 {g (x) ≤ `} dH (x)

However, it is not possible to obtain a closed-form formula for the value-at-risk
F−1 (α) defined as follows:

F−1 (α) = {` : Pr {g (X) ≤ `} = α}

If we consider a single risk factor and assume that g (x) is an increasing func-
tion, we obtain:

Pr {g (X) ≤ `} = α ⇔ Pr
{
X ≤ g−1 (`)

}
= α

⇔ H
(
g−1 (`)

)
= α

⇔ ` = g
(
H−1 (α)

)
We finally deduce that the value-at-risk has the following expression:

F−1 (α) = g
(
H−1 (α)

)
=

n∑
i=1

wi × E [LGDi]× pi
(
H−1 (α)

)
(3.23)

Equation (3.23) is appealing because the value-at-risk satisfies the Euler de-
composition. Indeed, we have:

RCi = wi ×
∂ F−1 (α)

∂ wi

= wi × E [LGDi]× pi
(
H−1 (α)

)
(3.24)

and:
n∑
i=1

RCi = F−1 (α)
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Remark 32 If g (x) is a decreasing function, we obtain Pr
{
X ≥ g−1 (`)

}
=

α and:

F−1 (α) =

n∑
i=1

wi × E [LGDi]× pi
(
H−1 (1− α)

)
The risk contribution becomes:

RCi = wi × E [LGDi]× pi
(
H−1 (1− α)

)
(3.25)

We recall that Equation (3.24) has been obtained under the following as-
sumptions:

H1 The loss given default LGDi is independent from the default time τ i.

H2 The default times (τ 1, . . . , τn) depends on a single risk factor X and
are conditionally independent with respect to X.

H3 The portfolio is infinitely fine-grained, meaning that there is no exposure
concentration.

Equation (3.24) is a very important result for two main reasons. First, it im-
plies that, under the previous assumptions, the value-at-risk of an infinitely
fine-grained portfolio can be decomposed as a sum of independent risk con-
tributions. Indeed, RCi depends solely on the characteristics of the ith credit
(exposure at default, loss given default and probability of default). This facil-
itates the calculation of the value-at-risk of large portfolios. Second, the risk
contribution RCi is related to the expected value of the loss given default.
We don’t need to model the probability distribution of LGDi, only the mean
E [LGDi] is taken into account.

Closed-form formula of the value-at-risk In order to obtain a closed-
form formula, we need a model of default times. BCBS (2004) has selected
the one-factor model of Merton (1974), which has been formalized by Vasicek
(1991). Let Zi be the normalized asset value of the entity i. In the Merton
model, the default occurs when Zi is below a given barrier Bi:

Di = 1⇔ Zi < Bi

We deduce that:

pi = Pr {Di = 1}
= Pr {Zi < Bi}
= Φ (Bi)

The value of the barrier Bi is then Φ−1 (pi). We assume that the asset value
Zi depends on a common risk factor X and an idiosyncratic risk factor εi as
follows:

Zi =
√
ρX +

√
1− ρεi
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X and εi are two independent standard normal random variables. We note
that56:

E [ZiZj ] = E
[(√

ρX +
√

1− ρεi
)(√

ρX +
√

1− ρεj
)]

= E
[
ρX2 + (1− ρ) εiεj +X

√
ρ (1− ρ) (εi+εj)

]
= ρ

We interest ρ as the constant asset correlation. We now calculate the condi-
tional default probability:

pi (X) = Pr {Di = 1 | X}
= Pr {Zi < Bi | X}

= Pr
{√

ρX +
√

1− ρεi < Bi

}
= Pr

{
εi <

Bi −
√
ρX

√
1− ρ

}
= Φ

(
Bi −

√
ρX

√
1− ρ

)
Using the framework of the previous paragraph, we obtain:

g (x) =

n∑
i=1

wi × E [LGDi]× pi (x)

=

n∑
i=1

wi × E [LGDi]× Φ

(
Φ−1 (pi)−

√
ρX

√
1− ρ

)
We note that g (x) is a decreasing function if wi ≥ 0. Using Equation (3.25)
and using the relationship Φ−1 (1− α) = −Φ−1 (α), it follows that:

RCi = wi × E [LGDi]× Φ

(
Φ−1 (pi) +

√
ρΦ−1 (α)

√
1− ρ

)
(3.26)

Remark 33 We verify that pi is the unconditional default probability. Indeed,
we have:

EX [pi (X)] = EX
[
Φ

(
Φ−1 (pi)−

√
ρX

√
1− ρ

)]
=

∫ ∞
−∞

Φ

(
Φ−1 (pi)−

√
ρx

√
1− ρ

)
φ (x) dx

We recognize the integral function analyzed in Appendix A.2.2.4 in page 457.

56We have E [εiεj ] = 0 because εi and εj are two specific risk factors.
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We deduce that:

EX [pi (X)] = Φ2

(
∞, Φ−1 (pi)√

1− ρ
×
(

1

1− ρ

)−1/2

;

√
ρ

√
1− ρ

(
1

1− ρ

)−1/2
)

= Φ2

(
∞,Φ−1 (pi) ;

√
ρ
)

= Φ
(
Φ−1 (pi)

)
= pi

Example 30 We consider a homogeneous portfolio with 100 credits. For each
credit, the exposure at default, the expected LGD and the probability of default
are set to $1 mn, 50% and 5%.

Let us assume that the asset correlation ρ is equal to 10% We have reported
the numerical values of F−1 (α) for different values of α in Table 3.25. If we
are interested in the cumulative distribution function, F (`) is equal to the
numerical solution α of the equation F−1 (α) = `. Using a bisection algorithm,
we find the probabilities given in Table 3.25. For instance, the probability to
have a loss less than or equal to $3 mn is equal to 70.44%. Finally, to calculate
the probability density function of the portfolio loss, we use the following
relationship57:

f (x) =
1

∂α F−1 (F (x))

with:

∂α F−1 (α) =

n∑
i=1

wi × E [LGDi]×
√

ρ

1− ρ
× 1

φ (Φ−1 (α))
×

φ

(
Φ−1 (pi) +

√
ρΦ−1 (α)

√
1− ρ

)
In Figure 3.21, we compare the probability functions for two different asset
correlations. We note that the level of ρ has a big impact on the quantile
function and the shape of the density function.

TABLE 3.25: Numerical values of f (`), F (`) and F−1 (α) when ρ is equal
to 10%

α (in %) 10.00 25.00 50.00 75.00 90.00 95.00
F−1 (α) (in $ mn) 0.77 1.25 2.07 3.28 4.78 5.90

` (in $ mn) 0.10 1.00 2.00 3.00 4.00 5.00
F (`) (in %) 0.03 16.86 47.98 70.44 83.80 91.26
f (`) (in %) 1.04 31.19 27.74 17.39 9.90 5.43

57See Appendix A.2.2.2 in page 456.
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FIGURE 3.21: Probability functions of the credit portfolio loss

The risk contribution RCi depends on three credit parameters (the expo-
sure at default wi, the expected loss given default E [LGDi] and the probability
of default pi) and two model parameters (the asset correlation ρ and the con-
fidence level α of the value-at-risk). It is obvious that RCi is an increasing
function of the different parameters with the exception of the correlation. We
obtain:

sgn
∂RCi
∂ ρ

= sgn
1

2 (1− ρ)
3/2

(
Φ−1 (pi) +

Φ−1 (α)
√
ρ

)
We deduce that the risk contribution is not a monotone function with respect
to ρ. It increases if the term √ρΦ−1 (pi) + Φ−1 (α) is positive. This implies
that the risk contribution may decrease if the probability of default is very low
and the confidence level is larger than 50%. The two limiting cases are ρ = 0
and ρ = 1. In the first case, the risk contribution is equal to the expected loss:

RCi = E [Li] = wi × E [LGDi]× pi

In the second case, the risk contribution depends on the value of the proba-
bility of default:

lim
ρ→1
RCi =

 0 if pi < 1− α
0.5× wi × E [LGDi] if pi = 1− α
wi × E [LGDi] if pi > 1− α
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The behavior of the risk contribution is illustrated in Figure 3.22 with the
following base parameter values: wi = 100, E [LGDi] = 70%, ρ = 20% and
α = 90%. We verify that the risk contribution is an increasing function of
E [LGDi] (top/left panel) and α (top/right panel). When pi and α are set to
10% and 90%, the risk contribution increases with ρ and reaches the value
35, which corresponds to half of nominal loss given default. When pi and α
are set to 5% and 90%, the risk contribution increases in a first time and
then decreases (bottom/left panel). The maximum is reached for the value58
ρ? = 60.70%. When α is equal to 99%, this behavior vanishes (bottom/right
panel).

FIGURE 3.22: Relationship between the risk contribution RCi and model
parameters

In this model, the maturity Ti is taken into account through the proba-
bility of default. Indeed, we have pi = Pr {τ ≤ Ti}. Let us denote PDi the
annual default probability of the obligor. If we assume that the default time

58We have:

ρ? = max2

(
0,−

Φ−1 (α)

Φ−1 (pi)

)
=

(
1.282

1.645

)2

= 60.70%
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is Markovian, we have the following relationship:

pi = 1− Pr {τ > Ti}
= 1− (1− PDi)

Ti

We can then rewrite Equation (3.26) such that the risk contribution depends
on the exposure at default, the expected loss given default, the annualized
probability of default and the maturity, which are the 4 parameters of the
IRB approach.

3.2.3.3 The IRB formulas

A long process to obtain the finalized formulas The IRB formula of
the second consultative portfolio was calibrated with α = 99.5%, ρ = 20%
and a standard maturity of three years. To measure the impact of this ap-
proach, the Basel Committee conducted a quantitative impact study (QIS) in
April 2001. A QIS is an Excel workbook to be filled by the bank. It allows the
Basel Committee to gauge the impact of the different proposals for capital re-
quirements. The answers are then gathered and analyzed at the industry level.
Results are published in November 2001. Overall, 138 banks from 25 countries
participated in the QIS. Not all participating banks managed to calculate the
capital requirements under the three methods (SA, FIRB and AIRB). How-
ever, 127 banks provided complete information on the SA approach and 55
banks on the FIRB approach. Only 22 banks were able to calculate the AIRB
approach for all portfolios.

TABLE 3.26: Percentage change in capital requirements under CP2 propos-
als

SA FIRB AIRB

G10 Group 1 6% 14% −5%
Group 2 1%

EU Group 1 6% 10% −1%
Group 2 −1%

Others 5%

Source: Basel Committee on Banking Supervision (2001b).

In Table 3.26, we report the difference in capital requirements between
CP2 proposals and Basel I. Group 1 corresponds to diversified, internationally
active banks with Tier 1 capital of at least e 3 bn whereas Group 2 consists of
smaller or more specialized banks. BCBS (2001b) concluded that “on average,
the QIS2 results indicate that the CP2 proposals for credit risk would deliver
an increase in capital requirements for all groups under both the SA and
FIRB approaches”. It was obvious that these figures were not satisfactory.
The Basel Committee considered then several modifications in order to (1)
maintain equivalence on average between current required capital and the
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revised SA approach and (2) provide incentives under the FIRB approach. A
third motivation has emerged rapidly. According to many studies59, Basel II
may considerably increase the procyclicality of capital requirements. Indeed,
capital requirements may increase in an economic meltdown, because LGD
increases in bad times and credits received lower ratings. In this case, capital
requirements may move in an opposite direction than the macro-economic
cycle, leading banks to reduce their supply of credit. In this scenario, Basel II
proposals may amplify credit crises and economic downturns. All these reasons
explain the long period to finalize the Basel II Accord. After two new QIS (QIS
2.5 in July 2002 and QIS 3 in May 2003) and a troubled period at the end
of 2003, the new Capital Accord is finally published in June 2004. However,
there is a shared feeling that it is more a compromise than a terminated task.
Thus, several issues are unresolved and new QIS will be conducted in 2004
and 2005 before the implementation in order to confirm the calibration.

The supervisory formula If we use the notations of the Basel Committee,
the risk contribution has the following expression:

RC = EAD×LGD×Φ

Φ−1
(

1− (1− PD)M
)

+
√
ρΦ−1 (α)

√
1− ρ


where EAD is the exposure at default, LGD is the (expected) loss given de-
fault, PD is the (one-year) probability of default and M is the effective matu-
rity. Because RC is directly the capital requirement (RC = 8% × RWA), we
deduce that the risk-weighted asset is equal to:

RWA = 12.50× EAD×K? (3.27)

where K? is the normalized required capital for a unit exposure:

K? = LGD×Φ

Φ−1
(

1− (1− PD)M
)

+
√
ρΦ−1 (α)

√
1− ρ

 (3.28)

In order to obtain the finalized formulas, the Basel Committee has introduced
the following modifications:

• a maturity adjustment ϕ (M) has been added in order to separate the
impact of the one-year probability of default and the effect of the matu-
rity; the function ϕ (M) has then been calibrated such that Expression
(3.28) becomes:

K? ≈ LGD×Φ

(
Φ−1 (PD) +

√
ρΦ−1 (α)

√
1− ρ

)
× ϕ (M) (3.29)

59See for instance Goodhart et al. (2004) or Kashyap and Stein (2004).
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• it has used a confidence level of 99.9% instead of the 99.5% value;

• it has defined a parametric function ρ (PD) for the default correlation in
order that low ratings are not too penalizing for capital requirements;

• it has considered the unexpected loss as the credit risk measure:

ULα = VaRα−E [L]

In summary, the risk-weighted asset in the IRB approach is calculated using
Equation (3.27) and the following normalized required capital:

K? =

(
LGD×Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD×PD

)
×ϕ (M)

(3.30)

Risk-weighted assets for corporate, sovereign, and bank exposures
The three asset classes uses the same formula:

K? =

(
LGD×Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD×PD

)
×(

1 + (M−2.5)× b (PD)

1− 1.5× b (PD)

)
(3.31)

with b (PD) = (0.11852− 0.05478× ln (PD))
2 and:

ρ (PD) = 12%× 1− e−50×PD

1− e−50
+ 24%×

1−
(
1− e−50×PD

)
1− e−50

(3.32)

We note that the maturity adjustment ϕ (M) vanishes when the effective ma-
turity is one year. For a defaulted exposure, we have:

K? = max (0,LGD−EL)

where EL is the bank’s best estimate of the expected loss60.
For Small and medium-sized enterprises61, a firm-size adjustment is intro-

duced by defining a new parametric function for the default correlation:

ρSME (PD) = ρ (PD)− 4%×
(

1− (max (S, 5)− 5)

45

)
where S is the reported sales expressed in emn. This adjustment has the effect
to reduce the default correlation and then the risk-weighted asset. Similarly,

60We can assimilate it to specific provisions.
61They are defined as corporate entities where the reported sales for the consolidated

group of which the firm is a part is less than e 50 mn.
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the Basel Committee proposes specific arrangements for specialized lending
and high-volatility commercial real estate (HVCRE).

In the foundation IRB approach, the banks estimates the probability of
default, but uses standard values for the other parameters. In the advanced
IRB approach, the bank always estimates the parameters PD and M, and may
uses its own estimates for the parameters EAD and LGD subject to certain
minimum requirements. The risk components are defined as follows:

1. The exposure of default is the amount of the claim, without taking into
account specific provisions or partial write-offs. For off-balance sheet
positions, the bank uses the same credit conversion factors for the FIRB
approach as for the SA approach. In the AIRB approach, the bank may
use its own internal measures of CCF.

2. In the FIRB approach, the loss given default is set to 45% for senior
claims and 75% for subordinated claims. In the AIRB approach, the
bank may use its own estimates of LGD. However, they must be con-
servative and take into account adverse economic conditions. Moreover,
they must include all the recovery costs (litigation cost, administrative
cost, etc.).

3. PD is the one-year probability of default calculated with the internal
rating system. For corporate and bank exposures, a floor of 0.03% is
applied.

4. The maturity is set to 2.5 years in the FIRB approach. In the advanced
approach, M is the weighted average time of the cash flows, with a one-
year floor and a five-year cap.

Exercise 31 We consider a senior debt of $3 mn on a corporate firm. The
residual maturity of the debt is equal to 2 years. We estimate the one-year
probability of default at 5%.

To determine the capital charge, we first calculate the default correlation:

ρ (PD) = 12%× 1− e−50×0.05

1− e−50
+ 24%×

1−
(
1− e−50×0.05

)
1− e−50

= 12.985%

We have:

b (PD) = (0.11852− 0.05478× ln (0.05))
2

= 0.0799

It follows that the maturity adjustment is equal to:

ϕ (M) =
1 + (2− 2.5)× 0.0799

1− 1.5× 0.0799
= 1.0908
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The normalized capital charge with a one-year maturity is:

K? = 45%× Φ

(
Φ−1 (5%) +

√
12.985%Φ−1 (99.9%)√

1− 12.985%

)
− 45%× 5%

= 0.1055

When the maturity is two years, we obtain:

K? = 0.1055× 1.0908

= 0.1151

We deduce the value taken by the risk weight:

RW = 12.5× 0.1151

= 143.87%

It follows that the risk-weighted asset is equal to $4.316 mn whereas the capital
charge is $345 287. Using the same process, we have calculated the values of
risk weight for different values of PD, LGD and M in Table 3.270. The last
two columns are for a SME claim by considering that sales are equal to e 5
mn.

TABLE 3.27: IRB Risk weights (in %) for corporate exposures

PD M = 1 M = 2.5 M = 2.5 (SME)
(in %) 45.0 75.0 45.0 75.0 45.0 75.0

0.10 18.7 31.1 29.6 49.4 23.3 38.8
0.50 52.2 86.9 69.6 116.0 54.9 91.5
1.00 73.3 122.1 92.3 153.9 72.4 120.7
2.00 95.8 159.6 114.8 191.4 88.5 147.6
5.00 131.9 219.8 149.8 249.8 112.3 187.1

10.00 175.7 292.9 193.1 321.8 146.5 244.2
20.00 223.0 371.6 238.2 397.0 188.4 314.0

Risk-weighted assets for retail exposures Claims can be included in
the regulatory retail portfolio if they meet certain criteria: in particular, the
exposure must be to an individual person or persons or to a small business;
it satisfies the granularity criterion, meaning that no aggregate exposure to
one counterpart can exceed 0.2% of the overall regulatory retail portfolio; the
aggregated exposure to one counterparty cannot exceed e 1 mn. In these cases,
the bank use the following IRB formula:

K? = LGD×Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD×PD
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We note that the IRB formula uses a one-year fixed maturity. The value of the
default correlation depends on the categories. For residential mortgage expo-
sures, we have ρ (PD) = 15% whereas the default correlation ρ (PD) is equal
to 4% for qualifying revolving retail exposures. For other retail exposures, it
is defined as follows:

ρ (PD) = 3%× 1− e−35×PD

1− e−35
+ 16%×

1−
(
1− e−35×PD

)
1− e−35

in Table 3.28, we report the corresponding risk weights for the three categories
and for two different values of LGD.

TABLE 3.28: IRB Risk weights (in %) for retail exposures

PD Mortgage Revolving Other retail
(in %) 45.0 25.0 45.0 85.0 45.0 85.0

0.10 10.7 5.9 2.7 5.1 11.2 21.1
0.50 35.1 19.5 10.0 19.0 32.4 61.1
1.00 56.4 31.3 17.2 32.5 45.8 86.5
2.00 87.9 48.9 28.9 54.6 58.0 109.5
5.00 148.2 82.3 54.7 103.4 66.4 125.5

10.00 204.4 113.6 83.9 158.5 75.5 142.7
20.00 253.1 140.6 118.0 222.9 100.3 189.4

The two other pillars The first pillar of Basel II, which concerns minimum
capital requirements, is completed by two other pillars. The second pillar is
the supervisory review process (SRP) and is composed of two main processes:
the supervisory review and evaluation process (SREP) and the internal capital
adequacy assessment process (ICAAP). SREP defines the regulatory response
to the first pillar, in particular the validation processes. ICAAP addresses
risks that are not captured in Pillar 1 like concentration risk or non-granular
portfolios in the case of credit risk. For instance, stress tests are part of Pillar
2. The goal of the second pillar is then to encourage banks to continuously
improve their internal models and processes for assessing the adequacy of
their capital and to ensure that supervisors have the adequate tools to control
them. The third pillar, which is also called market discipline, requires banks
to publish comprehensive information about their risk management process.
This is particularly true since the publication in January 2015 of the revised
pillar 3 disclosure requirements. Indeed, BCBS (2015a) imposes the use of
templates for quantitative disclosure with a fixed format in order to facilitate
the comparison between banks.
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3.2.4 The securitization framework

3.2.5 Basel IV proposals

3.3 Credit risk modeling
We now address the problem of parameter specification. This mainly con-

cerns the exposure at default, the loss given default and the probability of
default because the effective maturity is well defined. This section also ana-
lyzes default correlations and non granular portfolios when the bank develop
its own credit model for calculating economic capital and satisfying Pillar 2
requirements.

3.3.1 Exposure at default

3.3.2 Loss given default

3.3.2.1 Economic modeling

3.3.2.2 Stochastic modeling

3.3.3 Probability of default

3.3.3.1 Survival function

The survival function is the main tool to characterize the probability of
default. It is also known as reduced form modeling.

Definition and main properties Let τ be a default (or survival) time.
The survival function62 is defined as follows:

S (t) = Pr {τ > t}
= 1− F (t)

where F is the cumulative distribution function. We deduce that the density
function is related to the survival function in the following manner:

f (t) = −∂ S (t)

∂ t
(3.33)

In survival models, the key concept is the hazard function λ (t), which is the
instantaneous default rate given that the default has not occurred before t:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t+ dt | τ ≥ t}
dt

62Previously, we have noted the survival function as St0 (t). Here, we assume that the
current time t0 is 0.



Credit Risk 205

We deduce that:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t+ dt}
dt

× 1

Pr {τ ≥ t}

=
f (t)

S (t)

Using Equation (3.33), another expression of the hazard function is:

λ (t) = −∂t S (t)

S (t)

= −∂ ln S (t)

∂ t

The survival function can then be rewritten with respect to the hazard func-
tion and we have:

S (t) = e−
∫ t
0
λ(s) ds (3.34)

In Table 3.29, we have reported the most common hazard and survival func-
tions. They can be extended by adding explanatory variables in order to obtain
proportional hazard models (Cox, 1972). In this case, the expression of the
hazard function is λ (t) = λ0 (t) exp

(
β>x

)
where λ0 (t) is the baseline haz-

ard rate function and x is the vector of explanatory variables, which are not
dependent on time.

TABLE 3.29: Common survival functions
Model S (t) λ (t)

Exponential exp (−λt) λ
Weibull exp (−λtγ) λγtγ−1

Log-normal 1− Φ (γ ln (λt)) γt−1φ (γ ln (λt)) / (1− Φ (γ ln (λt)))

Log-logistic 1/
(

1 + λt
1
γ

)
λγ−1t

1
γ /
(
t+ λt1+ 1

γ

)
Gompertz exp (λ (1− eγt)) λγ exp (γt)

The exponential model holds a special place in default time models. It can
be justified by the following problem in physics:

“Assume that a system consists of n identical components which
are connected in series. This means that the system fails as soon as
one of the components fails. One can assume that the components
function independently. Assume further that the random time in-
terval until the failure of the system is one nth of the time interval
of component failure” (Galambos, 1982).

We have Pr {min (τ 1, . . . , τn) ≤ t} = Pr {τi ≤ n× t}. The problem is then
equivalent to solve the functional equation S (t) = Sn (t/n) with S (t) =
Pr {τ1 > t}. We can show that the unique solution for n ≥ 1 is the exponential
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distribution. Following Galambos and Kotz (1978), its other main properties
are:

1. the mean residual life E [τ | τ ≥ t] is constant;

2. it satisfies the famous lack of memory property:

Pr {τ ≥ t+ u | τ ≥ t} = Pr {τ ≥ u}

or equivalently S (t+ u) = S (t) S (u);

3. the probability distribution of n× τ 1:n is the same than this of τ i.

Piecewise exponential model In credit risk models, the standard distri-
bution to define default times is a generalization of the exponential model by
considering piecewise constant hazard rates:

λ (t) =

M∑
m=1

λm × 1
{
t?m−1 < t ≤ t?m

}
= λm if t ∈

]
t?m−1, t

?
m

]
where t?m are the knots of the function63. For t ∈

]
t?m−1, t

?
m

]
, the expression

of the survival function becomes:

S (t) = exp

(
−
m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t− t?m−1

))
= S

(
t?m−1

)
e−λm(t−t?m−1)

It follows that the density function is equal to 64:

f (t) = λm exp

(
−
m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t− t?m−1

))

In Figure 3.23, we have reported the hazard, survival and density functions
for three set of parameters {(t?m, λm) ,m = 1, . . . ,M}:

{(1, 1%) , (2, 1.5%) , (3, 2%) , (4, 2.5%) , (∞, 3%)} for λ1 (t)

{(1, 10%) , (2, 7%) , (5, 5%) , (7, 4.5%) , (∞, 6%)} for λ2 (t)

and λ3 (t) = 4%. We note the special shape of the density function, which is
not smooth at the knots.

63We have t?0 = 0 and t?M+1 =∞.
64We verify that:

f (t)

S (t)
= λm if t ∈

]
t?m−1, t

?
m

]
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FIGURE 3.23: Examples of piecewise exponential model

Estimation To estimate the parameters of the survival function, we can use
the cohort approach. Under this method, we estimate the empirical survival
function by counting the number of entities for a given population that do not
default over the period ∆t:

Ŝ (∆t) = 1−
∑n
i=1 1 {t < τ i ≤ t+ ∆t}

n

where n is the number of entities that compose the population. We can then
fit the survival function by using for instance the least squares method.

Example 32 We consider a population of 1000 companies. The number of
defaults nD (∆t) over the period ∆t is given in the table below:

∆t (in months) 3 6 9 12 15 18 21 22

nD (∆t) 2 5 9 12 16 20 25 29

We obtain Ŝ (0.25) = 0.998, Ŝ (0.50) = 0.995, Ŝ (0.75) = 0.991, Ŝ (1.00) =
0.988, Ŝ (1.25) = 0.984, Ŝ (1.50) = 0.980, Ŝ (1.75) = 0.975 and Ŝ (2.00) =

0.971. For the exponential model, the least squares estimator λ̂ is equal to
1.375%. In the case of the Gompertz survival function, we obtain λ̂ = 2.718%
and γ̂ = 0.370. If we consider the piecewise exponential model, whose knots
correspond to the different periods ∆t, we have λ̂1 = 0.796%, λ̂2 = 1.206%,
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λ̂3 = 1.611%, λ̂4 = 1.216%, λ̂5 = 1.617%, λ̂6 = 1.640%, λ̂7 = 2.044% and
λ̂8 = 1.642%. To compare these three calibrations, we report the correspond-
ing hazard functions in Figure 3.24. We deduce that the one-year default
probability65 is respectively equal to 1.366%, 1.211% and 1.200%.

FIGURE 3.24: Estimated hazard function

In the piecewise exponential model, we can specify an arbitrary number
of knots. In the previous example, we use the same number of knots than
the number of observations to calibrate. In such case, we can calibrate the
parameters using the following iterative process:

1. We first estimate the parameter λ1 for the earliest maturity ∆t1.

2. Assuming that
(
λ̂1, . . . , λ̂i−1

)
have been estimated, we calculate λ̂i for

the next maturity ∆ti.

3. We iterate Step 2 until the last maturity ∆tm.

This algorithm works well if the knots t?m exactly match the maturities. It is
known as the bootstrap method and is very popular to estimate the survival
function from market prices. Let {s (T1) , . . . , s (TM )} be a set of CDS spreads
for a given name. Assuming that T1 < T2 < . . . < TM , we consider the

65We have PD = 1− S (1).
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piecewise exponential model with t?m = Tm. We first estimate λ̂1 such that
the theoretical spread is equal to s (T1). We then calibrate the hazard function
in order to retrieve the spread s (T2) for the second maturity. This means to
consider that λ (t) is known and equal to λ̂1 until time T1 whereas λ (t) is
unknown from T1 to T2:

λ (t) =

{
λ̂1 if t ∈ ]0, T1]
λ2 if t ∈ ]T1, T2]

Estimating λ̂2 is therefore straightforward because it is equivalent to solve
one equation with one variable. We proceed in a similar way for the other
maturities.

Example 33 We assume that the term structure of interest rates is generated
by the Nelson-Siegel model with θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10.
We consider three credit curves, whose CDS spreads expressed in bps are given
in the following table:

Maturity
#1 #2 #3(in years)

1 50 50 350
3 60 60 370
5 70 90 390
7 80 115 385

10 90 125 370

The recovery rate is set to 40%.

TABLE 3.30: Calibrated piecewise exponential model from CDS prices

Maturity
#1 #2 #3(in years)

1 83.3 83.3 582.9
3 110.1 110.1 637.5
5 140.3 235.0 702.0
7 182.1 289.6 589.4

10 194.1 241.9 498.5

Using the bootstrap method, we obtain results in Table 3.30. We notice
that the piecewise exponential model coincide for the credit curves #1 and
#2 for t < 3 years. This is normal because the CDS spreads of the two credit
curves are equal when the maturity is less or equal than 3 years. The third
credit curve illustrates that the bootstrap method is highly sensitive to small
differences. Indeed, the calibrated intensity parameter varies from 499 to 702
bps while the CDS spreads varies from 350 to 390 bps. Finally, the survival
function associated to these 3 bootstrap calibrations are shown in Figure 3.25.
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FIGURE 3.25: Calibrated survival function from CDS prices

Remark 34 Other methods for estimating the probability of default are pre-
sented in Chapter 19 dedicated to credit scoring models.

3.3.3.2 Transition probability matrix

When dealing with risk classes, it is convenient to model the matrix of
transition probabilities. For instance, this approach is used for modeling credit
rating migration.

Discrete time modeling We consider a time-homogeneous Markov chain
R, whose the transition matrix is P = (pi,j). We note S = {1, 2, . . . ,K} the
state space of the chain and pi,j is the probability that the entity migrates
from rating i to rating j. The matrix P satisfies the following properties:

• ∀i, j ∈ S, pi,j ≥ 0;

• ∀i ∈ S,
∑K
j=1 pi,j = 1.

In credit risk, we generally assume thatK is the absorbing state (or the default
state), implying that any entity which has reached this state remains in this
state. In this case, we have pK,K = 1. Let R (t) be the value of the state at
time t. We define p (s, i; t, j) as the probability that the entity reaches the
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state j at time t given that it has reached the state i at time s . We have:

p (s, i; t, j) = Pr {R (t) = j | R (s) = i}
= p

(t−s)
i,j

This probability only depends on the duration between s and t because of the
Markov property. Therefore, we can restrict the analysis by calculating the
n-step transition probability:

p
(n)
i,j = Pr {R (t+ n) = j | R (t) = i}

and the associated n-step transition matrix P (n) =
(
p

(n)
i,j

)
. For n = 2, we

obtain:

p
(2)
i,j = Pr {R (t+ 2) = j | R (t) = i}

=

K∑
k=1

Pr {R (t+ 2) = j,R (t+ 1) = k | R (t) = i}

=

K∑
k=1

Pr {R (t+ 2) = j | R (t+ 1) = k} × Pr {R (t+ 1) = k | R (t) = i}

=

K∑
k=1

pi,k × pk,j

In a similar way, we obtain:

p
(n+m)
i,j =

K∑
k=1

p
(n)
i,k × p

(m)
k,j ∀n,m > 0 (3.35)

This equation is called the Chapman-Kolmogorov equation. In matrix form,
we have:

P (n+m) = P (n) × P (m)

with the convention P (0) = I. In particular, we have:

P (n) = P (n−1) × P (1)

= P (n−2) × P (1) × P (1)

=

n∏
t=1

P (1)

= Pn

We deduce that:
p (t, i; t+ n, j) = p

(n)
i,j = e>i P

nej (3.36)

When we apply this framework to credit risk, R (t) denotes the rating (or the
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risk class) of the firm at time t, pi,j is the one-period transition probability
from rating i to rating j and pi,K is the one-period default probability of rating
i. In Table 3.31, we report the S&P one-year transition matrix for corporate
bonds estimated by Kavvathas (2001). We read the figures as follows66: a firm
rated AAA has a one-year probability of 92.83% to remain AAA; its probability
to become AA is 6.50%; a firm rated CCC defaults one year later with a
probability equal to 23.50%; etc.

TABLE 3.31: Example of credit migration matrix (in %)

AAA AA A BBB BB B CCC D
AAA 92.82 6.50 0.56 0.06 0.06 0.00 0.00 0.00
AA 0.63 91.87 6.64 0.65 0.06 0.11 0.04 0.00
A 0.08 2.26 91.66 5.11 0.61 0.23 0.01 0.04

BBB 0.05 0.27 5.84 87.74 4.74 0.98 0.16 0.22
BB 0.04 0.11 0.64 7.85 81.14 8.27 0.89 1.06
B 0.00 0.11 0.30 0.42 6.75 83.07 3.86 5.49

CCC 0.19 0.00 0.38 0.75 2.44 12.03 60.71 23.50
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Source: Kavvathas (2001).

In Table 3.32 and 3.33, we have reported the two-year and five-year tran-
sition matrices. We detail below the calculation of p(2)

AAA,AAA:

p
(2)
AAA,AAA = pAAA,AAA × pAAA,AAA + pAAA,AA × pAA,AAA + pAAA,A × pA,AAA +

pAAA,BBB × pBBB,AAA + pAAA,BB × pBB,AAA + pAAA,B × pB,AAA +

pAAA,CCC × pCCC,AAA
= 0.92832 + 0.0650× 0.0063 + 0.0056× 0.0008 +

0.0006× 0.0005 + 0.0006× 0.0004

= 86.1970%

We note π(n)
i the probability of the state i at time n:

π
(n)
i = Pr {R (n) = i}

and π(n) =
(
π

(n)
1 , . . . , π

(n)
K

)
the probability distribution. By construction, we

have:
π(n+1) = P>π(n)

The Markov chain R admits a stationary distribution π? if67:

π? = P>π?

66The rows represent the initial rating whereas the columns indicate the final rating.
67Not all Markov chain behave in this way, meaning that π? does not necessarily exist.
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TABLE 3.32: Two-year transition matrix P 2 (in %)

AAA AA A BBB BB B CCC D
AAA 86.20 12.02 1.47 0.18 0.11 0.01 0.00 0.00
AA 1.17 84.59 12.23 1.51 0.18 0.22 0.07 0.02
A 0.16 4.17 84.47 9.23 1.31 0.51 0.04 0.11

BBB 0.10 0.63 10.53 77.66 8.11 2.10 0.32 0.56
BB 0.08 0.24 1.60 13.33 66.79 13.77 1.59 2.60
B 0.01 0.21 0.61 1.29 11.20 70.03 5.61 11.03

CCC 0.29 0.04 0.68 1.37 4.31 17.51 37.34 38.45
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

TABLE 3.33: Five-year transition matrix P 5 (in %)

AAA AA A BBB BB B CCC D
AAA 69.23 23.85 5.49 0.96 0.31 0.12 0.02 0.03
AA 2.35 66.96 24.14 4.76 0.86 0.62 0.13 0.19
A 0.43 8.26 68.17 17.34 3.53 1.55 0.18 0.55

BBB 0.24 1.96 19.69 56.62 13.19 5.32 0.75 2.22
BB 0.17 0.73 5.17 21.23 40.72 20.53 2.71 8.74
B 0.07 0.47 1.73 4.67 16.53 44.95 5.91 25.68

CCC 0.38 0.24 1.37 2.92 7.13 18.51 9.92 59.53
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

In this case, π?i is the limiting probability of state i:

lim
n=∞

p
(n)
k,i = π?i

We can interpret π?i as the average duration spent by the chain R in the state
i. Let Ti be the return period68 of state i:

Ti = inf {n : R (n) = i | R (0) = i}

The average return period is then equal to:

E [Ti] =
1

π?i

For credit migration matrices, there is no stationary distribution because the
long-term rating R (∞) is the absorbing state as noted by Jafry and Schuer-
mann:

“Given sufficient time, all firms will eventually sink to the default
state. This behavior is clearly a mathematical artifact, stemming

68This concept plays an important role when designing stress scenarios (see Chapter 18).
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from the idealized linear, time invariant assumptions inherent in
the simple Markov model. In reality the economy (and hence the
migration matrix) will change on time-scales far shorter than re-
quired to reach the idealized default steady-state proscribed by
an assumed constant migration matrix” (Jafry and Schuermann,
2004, page 2609).

We note that the survival function Si (t) of a firm whose initial rating is
the state i is given by:

Si (t) = 1− Pr {R (t) = K | R (0) = i}
= 1− e>i P

teK (3.37)

In the piecewise exponential model, we recall that the survival function has
the following expression:

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1)

for t ∈
]
t?m−1, t

?
m

]
. We deduce that S (t?m) = S

(
t?m−1

)
e−λm(t?m−t

?
m−1), imply-

ing that:
ln S (t?m) = ln S

(
t?m−1

)
− λm

(
t?m − t?m−1

)
and:

λm =
ln S

(
t?m−1

)
− ln S (t?m)

t?m − t?m−1

It is then straightforward to estimate the piecewise hazard function:

• the knots of the piecewise function are the years m ∈ N∗;

• for each initial rating i, the hazard function λi (t) is defined as:

λi (t) = λi,m if t ∈ ]m− 1,m]

with:

λi,m =
ln Si (m− 1)− ln Si (m)

m− (m− 1)

= ln

(
1− e>i P

m−1eK
1− e>i P

meK

)
and P 0 = I.

If we consider the credit migration matrix given in Table 3.31 and estimate the
piecewise exponential model, we obtain the hazard function69 λi (t) shown in
Figure 3.26. For good initial ratings, hazard rates are low for short maturities

69Contrary to the graph suggests, λi (t) is a piecewise constant function (see details of
the curve in the fifth panel for very short maturities).



Credit Risk 215

and increase with time. For bad initial ratings, we obtain the opposite effect,
because the firm can only improve its rating if it did not default. We observe
that the hazard function of all ratings converges to the same level, which is
equal to 102.63 bps. This indicates the long-term hazard rate of the Markov
chain, meaning that 1.02% of firms default every year.

FIGURE 3.26: Estimated hazard function λi (t) from the credit migration
matrix

Continuous time modeling We now consider the case t ∈ R+. We note
P (s; t) the transition matrix defined as follows:

Pi,j (s; t) = p (s, i; t, j)

= Pr {R (t) = j | R (s) = i}

Assuming that the Markov chain is time-homogenous, we have P (t) = P (0; t).
Jarrow et al. (1997) introduce the generator matrix Λ = (λi,j) where λi,j ≥ 0
for all i 6= j and:

λi,i = −
K∑
j 6=i

λi,j

In this case, the transition matrix satisfies the following relationship:

P (t) = exp (tΛ) (3.38)
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where exp (A) is the matrix exponential of A. Let us give a probabilistic
interpretation of Λ. If we assume that the probability of jumping from rating
i to rating j in a short time period ∆t is proportional to ∆t, we have:

p (t, i; t+ ∆t, j) = λi,j∆t

The matrix form of this equation is P (t; t+ ∆t) = Λ ∆t. We deduce that:

P (t+ ∆t) = P (t)P (t; t+ ∆t)

= P (t) Λ ∆t

We deduce that:
dP (t) = P (t) Λ dt

Because we have exp (0) = I, we obtain the solution P (t) = exp (tΛ). We
then interpret λi,j as the instantaneous transition rate of jumping from rating
i to rating j.

Remark 35 In Appendix A.1.1.2, we present the matrix exponential function
and its mathematical properties. In particular, we have eA+B = eAeB and
eA(s+t) = eAseAt where A and B are two square matrices such that AB = BA
and s and t are two real numbers.

Example 34 We consider a rating system with three states: A (good rating),
B (bad rating) and D (default). The Markov generator is equal to:

Λ =

 −0.30 0.20 0.10
0.15 −0.40 0.25
0.00 0.00 0.00


The one-year transition matrix is equal to:

P (1) = eΛ =

 75.16% 14.17% 10.67%
10.63% 68.07% 21.30%
0.00% 0.00% 100.00%


For the two-year maturity, we get:

P (2) = e2Λ =

 58.00% 20.30% 21.71%
15.22% 47.85% 36.93%
0.00% 0.00% 100.00%


We verify that P (2) = P (1)

2. This derives from the property of the matrix
exponential:

P (t) = etΛ =
(
eΛ
)t

= P (1)
t

The continuous-time framework allows to calculate transition matrices for
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non-integer maturities, which do not correspond to full years. For instance,
the one-month transition matrix of the previous example is equal to:

P (2) = e
1
12 Λ =

 97.54% 1.62% 0.84%
1.21% 96.73% 2.05%
0.00% 0.00% 100.00%


One of the issue with the continuous time framework is to estimate the

Markov generator Λ. One solution consists in using the empirical transition
matrix P̂ (t), which have been calculated for a given time horizon t. In this
case, the estimate Λ̂ must satisfy the relationship P̂ (t) = exp

(
tΛ̂
)
. We deduce

that:
Λ̂ =

1

t
ln
(
P̂ (t)

)
where ln (A) is the matrix logarithm of A. However, the matrix Λ̂ can not verify
the Markov conditions λ̂i,j ≥ 0 for all i 6= j and

∑K
j=1 λi,j = 0. For instance,

if we consider the previous S&P transition matrix, we obtain the generator Λ̂
given in Table 3.34. We notice that six off-diagonal elements of the matrix are
negative70. This implies that we can obtain transition probabilities which are
negative for short maturities.

70We have also calculated the estimator described in Israel et al. (2001):

Λ̆ =

∞∑
n=1

(−1)n+1

(
P̂ − I

)n
n

We do not obtain the same matrix as for the estimator Λ̂, but there are also six negative
off-diagonal elements (see Table 3.35).
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TABLE 3.34: Markov generator Λ̂ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.49 703.67 35.21 3.04 6.56 −0.79 −0.22 0.02
AA 67.94 −859.31 722.46 51.60 2.57 10.95 4.92 −1.13
A 7.69 245.59 −898.16 567.70 53.96 20.65 −0.22 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B −0.84 11.83 30.11 8.71 818.31 −1936.82 539.18 529.52

CCC 25.11 −2.89 44.11 84.87 272.05 1678.69 −5043.00 2941.06
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.35: Markov generator Λ̆ (in bps)

AAA AA A BBB BB B CCC D
AAA −745.85 699.11 38.57 2.80 6.27 −0.70 −0.16 −0.05
AA 67.54 −855.70 716.56 54.37 2.81 10.81 4.62 −1.01
A 7.77 243.62 −891.46 560.45 56.33 20.70 0.07 2.53

BBB 5.06 22.68 641.55 −1335.03 542.46 91.05 16.09 16.15
BB 4.18 10.12 48.00 903.40 −2111.65 965.71 98.28 81.96
B −0.56 11.61 29.31 19.39 789.99 −1887.69 491.46 546.49

CCC 23.33 −1.94 42.22 81.25 272.44 1530.66 −4725.22 2777.25
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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TABLE 3.36: Markov generator Λ̄ (in bps)

AAA AA A BBB BB B CCC D
AAA −748.50 703.67 35.21 3.04 6.56 0.00 0.00 0.02
AA 67.94 −860.44 722.46 51.60 2.57 10.95 4.92 0.00
A 7.69 245.59 −898.38 567.70 53.96 20.65 0.00 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B 0.00 11.83 30.11 8.71 818.31 −1937.66 539.18 529.52

CCC 25.11 0.00 44.11 84.87 272.05 1678.69 −5045.89 2941.06
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.37: Markov generator Λ̃ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.99 703.19 35.19 3.04 6.55 0.00 0.00 0.02
AA 67.90 −859.88 721.98 51.57 2.57 10.94 4.92 0.00
A 7.69 245.56 −898.27 567.63 53.95 20.65 0.00 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B 0.00 11.83 30.10 8.71 818.14 −1937.24 539.06 529.40

CCC 25.10 0.00 44.10 84.84 271.97 1678.21 −5044.45 2940.22
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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In this case, Israel et al. (2001) propose two estimators to obtain a valid
generator:

1. the first approach consists in adding the negative values back into the
diagonal values:  λ̄i,j = max

(
λ̂i,j , 0

)
i 6= j

λ̄i,i = λ̂i,i +
∑
j 6=i min

(
λ̂i,j , 0

)
2. in the second method, we carry forward the negative values on the matrix

entries which have the correct sign:

Gi =
∣∣∣λ̂i,i∣∣∣+

∑
j 6=i max

(
λ̂i,j , 0

)
Bi =

∑
j 6=i max

(
−λ̂i,j , 0

)
λ̃i,j =


0 if i 6= j and λ̂i,j < 0

λ̂i,j −Bi
∣∣∣λ̂i,j∣∣∣ /Gi if Gi > 0

λ̂i,j if Gi = 0

Using the estimator Λ̂ and the two previous algorithm, we obtain the valid
generators given in Tables 3.36 and 3.37. We find that

∥∥∥P̂ − exp
(
Λ̄
)∥∥∥

2
=

11.02× 10−4 and
∥∥∥P̂ − exp

(
Λ̃
)∥∥∥

2
= 10.95× 10−4, meaning that the Markov

generator Λ̃ is the estimator that minimizes the distance to P̂ . We can then cal-
culate the transition matrix for all maturities, and not only for calendar years.
For instance, we report the 207-day transition matrix P

(
207
305

)
= exp

(
207
365 Λ̃

)
in Table 3.38.

TABLE 3.38: 207-day transition matrix (in %)

AAA AA A BBB BB B CCC D
AAA 95.85 3.81 0.27 0.03 0.04 0.00 0.00 0.00
AA 0.37 95.28 3.90 0.34 0.03 0.06 0.02 0.00
A 0.04 1.33 95.12 3.03 0.33 0.12 0.00 0.02

BBB 0.03 0.14 3.47 92.75 2.88 0.53 0.09 0.11
BB 0.02 0.06 0.31 4.79 88.67 5.09 0.53 0.53
B 0.00 0.06 0.17 0.16 4.16 89.84 2.52 3.08

CCC 0.12 0.01 0.23 0.45 1.45 7.86 75.24 14.64
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Remark 36 The continuous time framework is more flexible when modeling
credit risk. For instance, the expression of the survival function becomes:

Si (t) = Pr {R (t) = K | R (0) = i}
= 1− e>i exp (tΛ) eK
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We can therefore calculate the density function in a more easy way:

fi (t) = −∂t Si (t)

= e>i Λ exp (tΛ) eK

For illustration purposes, we represent the density function of S&P ratings
estimated with the valid generator Λ̃ in Figure 3.27.

FIGURE 3.27: Density function fi (t) of S&P ratings

3.3.3.3 Structural models

3.3.4 Default correlation

3.3.4.1 Factor models

3.3.4.2 Copula models

3.3.4.3 Estimation methods

3.3.5 Granularity and concentration

3.3.5.1 Difference between fine-grained and concentrated portfo-
lios

3.3.5.2 Granularity adjustment
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3.4 Exercises

3.4.1 Single and multi-name credit default swaps

1. We assume that the default time τ follows an exponential distribution
with parameter λ. Write the cumulative distribution function F, the
survival function S and the density function f of the random variable
τ . How do we simulate this default time?

2. We consider a CDS 3M with two-year maturity and $1 mn notional
principal. The recovery rate R is equal to 40% whereas the spread s is
equal to 150 bps at the inception date. We assume that the protection
leg is paid at the default time.

(a) Give the cash flow chart. What is the P&L of the protection seller
A if the reference entity does not default? What is the PnL of the
protection buyer B if the reference entity defaults in one year and
two months?

(b) What is the relationship between s , R and λ? What is the implied
one-year default probability at the inception date?

(c) Seven months later, the CDS spread has increased and is equal
to 450 bps. Estimate the new default probability. The protection
buyer B decides to realize his P&L. For that, he reassigns the CDS
contract to the counterparty C. Explain the offsetting mechanism
if the risky PV01 is equal to 1.189.

3. We consider the following CDS spread curves for three reference entities:

Maturity #1 #2 #3
6M 130 bps 1 280 bps 30 bps
1Y 135 bps 970 bps 35 bps
3Y 140 bps 750 bps 50 bps
5Y 150 bps 600 bps 80 bps

(a) Define the notion of credit curve. Comment the previous spread
curves.

(b) Using the Merton Model, we estimate that the one-year default
probability is equal to 2.5% for #1, 5% for #2 and 2% for #3 at a
five-year horizon time. Which arbitrage position could we consider
about the reference entity #2?

4. We consider a basket of n single-name CDS.

(a) What is a first-to-default (FtD), a second-to-default (StD) and a
last-to-default (LtD)?
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(b) Define the notion of default correlation. What is its impact on three
previous spreads?

(c) We assume that n = 3. Show the following relationship:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD

where sCDS
1 is the CDS spread of the ith reference entity.

(d) Many professionals and academics believe that the subprime crisis
is due to the use of the Normal copula. Using the results of the
previous question, what could you conclude?

3.4.2 Risk contribution in the Basel II model

1. We note L the portfolio loss of n credit and wi the exposure at default
of the ith credit. We have:

L (w) = w>ε =

n∑
i=1

wi × εi (3.39)

where εi is the unit loss of the ith credit. Let F be the cumulative
distribution function of L (w).

(a) We assume that ε = (ε1, . . . , εn) ∼ N (0,Σ). Compute the value-
at-risk VaRα (w) of the portfolio when the confidence level is equal
to α.

(b) Deduce the marginal value-at-risk of the ith credit. Define then the
risk contribution RCi of the ith credit.

(c) Check that the marginal value-at-risk is equal to:

∂ VaRα (w)

∂ wi
= E

[
εi | L (w) = F−1 (α)

]
Comment on this result.

2. We consider the Basel II model of credit risk and the value-at-risk risk
measure. The expression of the portfolio loss is given by:

L =

n∑
i=1

EADi×LGDi×1 {τ i < Mi} (3.40)

(a) Define the different parameters EADi, LGDi, τ i andMi. Show that
Model (3.40) can be written as Model (3.39) by identifying wi and
εi.

(b) What are the necessary assumptions (H) to obtain this result:

E
[
εi | L = F−1 (α)

]
= E [LGDi]× E

[
Di | L = F−1 (α)

]
with Di = 1 {τ i < Mi}.
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(c) Deduce the risk contribution RCi of the ith credit and the value-
at-risk of the credit portfolio.

(d) We assume that the credit i defaults before the maturity Mi if a
latent variable Zi goes below a barrier Bi:

τi ≤Mi ⇔ Zi ≤ Bi

We consider that Zi =
√
ρX +

√
1− ρεi where Zi, X and εi are

three independent Gaussian variables N (0, 1). X is the factor (or
the systemic risk) and εi is the idiosyncratic risk.

i. Interpret the parameter ρ.
ii. Calculate the unconditional default probability:

pi = Pr {τ i ≤Mi}

iii. Calculate the conditional default probability:

pi (x) = Pr {τ i ≤Mi | X = x}

(e) Show that, under the previous assumptions (H), the risk contribu-
tion RCi of the ith credit is:

RCi = EADi×E [LGDi]× Φ

(
Φ−1 (pi) +

√
ρΦ−1 (α)

√
1− ρ

)
(3.41)

when the risk measure is the value-at-risk.

3. We now assume that the risk measure is the expected shortfall:

ESα (w) = E [L | L ≥ VaRα (w)]

(a) In the case of the Basel II framework, show that we have:

ESα (w) =

n∑
i=1

EADi×E [LGDi]× E
[
pi (X) | X ≤ Φ−1 (1− α)

]
(b) By using the following result:∫ c

−∞
Φ(a+ bx)φ(x) dx = Φ2

(
c,

a√
1 + b2

;
−b√

1 + b2

)
where Φ2 (x, y; ρ) is the cdf of the bivariate Gaussian distribution
with correlation ρ on the space [−∞, x]× [−∞, y], deduce that the
risk contribution RCi of the ith credit in the Basel II model is:

RCi = EADi×E [LGDi]×
C
(
1− α, pi;

√
ρ
)

1− α
(3.42)

when the risk measure is the expected shortfall. Here C (u1, u2; θ)
is the Normal copula with parameter θ.
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(c) What do the results (3.41) and (3.42) become if the correlation ρ
is equal to zero? Same question if ρ = 1.

4. The risk contributions (3.41) and (3.42) were obtained considering the
assumptions (H) and the default model defined in Question 2(d). What
are the implications in terms of Pillar 2?

3.4.3 Calibration of the piecewise exponential model

1. We denote by F and S the distribution and survival functions of the
default time τ . Define the function S (t) and deduce the expression of
the associated density function f (t).

2. Define the hazard rate λ (t). Deduce that the exponential model corre-
sponds to the particular case λ (t) = λ.

3. We assume that the interest rate r is constant. In a continuous-time
model, we recall that the CDS spread is given by the following expres-
sion:

s (T ) =
(1−R)×

∫ T
0
e−rtf (t) dt∫ T

0
e−rtS (t) dt

(3.43)

where R is the recovery rate and T is the maturity of the CDS. Find
the triangle relationship when τ ∼ E (λ).

4. Let us assume that:

λ (t) =

 λ1 if t ≤ 3
λ2 if 3 < t ≤ 5
λ3 if t > 5

(a) Give the expression of the survival distribution S (t) and calculate
the density function f (t). Verify that the hazard rate λ (t) is a
piecewise constant function.

(b) Find the expression of the CDS spread using Equation (3.43).
(c) We consider three credit default swaps, whose maturity is respec-

tively 3, 5 and 7 years. Show that the calibration of the piecewise
exponential model implies to derive a set of 3 equations and then
solve for the unknown variables λ1, λ2 and λ3. What is the name
of this calibration method?

(d) Find an approximated solution when r is equal to zero and λm is
small. Comment on this result.

(e) We consider the following numerical application: r = 5%, s (3) =
100 bps, s (5) = 150 bps, s (7) = 160 bps and R = 40%. Estimate
the implied hazard rate function.

(f) Using the previous numerical results, simulate the default time with
the uniform random numbers 0.96, 0.23, 0.90 and 0.80.
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3.4.4 Modeling loss given default

1. What is the difference between the recovery rate and the loss given
default?

2. We consider a bank that grants 250 000 credits per year. The average
amount of a credit is equal to $50 000. We estimate that the average
default probability is equal to 1% and the average recovery rate is equal
to 65%. The total annual cost of the litigation department is equal to
$12.5 mn. Give an estimation of the loss given default?

3. The probability density function of the Beta probability distribution
B (a, b) is:

f (x) =
xa−1 (1− x)

b−1

B (a, b)

where B (a, b) =
∫ 1

0
ua−1 (1− u)

b−1
du.

(a) Why is the Beta probability distribution a good candidate to model
the loss given default? Which parameter pair (a, b) correspond to
the uniform probability distribution?

(b) Let us consider a sample (x1, . . . , xn) of n losses in case of default.
Write the log-likelihood function. Deduce the first order conditions
of the maximum likelihood estimator.

(c) We recall that the first two moments of the Beta probability dis-
tribution are:

E [X] =
a

a+ b

σ2 (X) =
ab

(a+ b)
2

(a+ b+ 1)

Find the method of moments estimator.

4. We consider a risk class C corresponding to a customer/product segmen-
tation specific to retail banking. A statistical analysis of 1 000 loss data
available for this risk class gives the following results:

LGDk 0% 25% 50% 75% 100%

nk 100 100 600 100 100

where nk is the number of data corresponding to LGDk.

(a) We consider a portfolio of 100 homogeneous credits, which belong
to the risk class C. The notional is $10 000 whereas the annual
default probability is equal to 1%. Calculate the expected loss of
this credit portfolio with a one-year horizon time if we use the
previous empirical distribution to model the LGD parameter.
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(b) We assume that the LGD parameter follows a Beta distribution
B (a, b). Calibrate the parameters a and b with the method of mo-
ments.

(c) We assume that the Basel II model is valid. We consider the port-
folio described in Question 4(a) and calculate the unexpected loss.
What is the impact if we use a uniform probability distribution
instead of the calibrated Beta probability distribution? Why does
this result hold even if we consider different factors to model the
default time?

3.4.5 Modeling default times with a Markov chain

We consider a rating system with 4 risk classes (A, B, C and D), where
rating D represents the default. The transition probability matrix with a two-
year horizon time is equal to71:

P (2) =


94 3 2 1
10 80 5 5
10 10 60 20
0 0 0 100


We also have:

P (4) =


88.860 5.420 3.230 2.490
17.900 64.800 7.200 10.100
16.400 14.300 36.700 32.600
0.000 0.000 0.000 100.000


and:

P (6) =


84.393 7.325 3.986 4.296
24.026 53.097 7.918 14.959
20.516 15.602 23.063 40.819
0.000 0.000 0.000 100.000


Let us denote by SA (t), SB (t) and SC (t) the survival functions of each risk
class A, B and C.

1. How are calculated the matrices P (4) and P (6)?

2. Assuming a piecewise exponential distribution, calibrate the hazard rate
function for each risk classes for 0 < t ≤ 2, 2 < t ≤ 4 and 4 < t ≤ 6.

3. Give the definition of a Markovian generator. How can we estimate the
generator Λ associated to the transition probability matrices? Verify

71The transition probabilities are expressed in %.
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numerically that the direct estimator is equal to:

Λ̂ =


−3.254 1.652 1.264 0.337

5.578 −11.488 3.533 2.377
6.215 7.108 −25.916 12.593
0.000 0.000 0.000 0.000

× 10−2

4. In Figure 3.28, we show the hazard function λ (t) deduced from Ques-
tions 2 and 3. Explain how do we calculate λ (t) in both cases. Why do
we obtain an increasing curve for rating A, a decreasing curve for rating
C and an inverted U-shaped curve for rating B?

FIGURE 3.28: Hazard function λ (t) (in bps) estimated respectively with
the piecewise exponential model and the Markov generator

3.4.6 Calculating the credit value-at-risk with non granular
portfolios

3.4.7 Understanding CDO cash flows

3.4.8 Modeling default correlations



Chapter 4
Counterparty Credit Risk and Collateral
Risk

4.1 Counterparty credit risk
We generally make the distinction between credit risk (CR) and counter-

party credit risk (CCR). The counterparty credit risk on market transactions
is the risk that the counterparty could default before the final settlement of
the transaction’s cash flows. For instance, if the bank buy a CDS protection on
a firm and the seller of the CDS protection could default before the maturity’s
contract, the bank could not be hedged to the default of the firm. Another
example of CCR is the delivery/settlement risk. Indeed, few financial transac-
tions are settled on the same-day basis and the difference between the payment
date and the delivery date is generally between one and five business days.
There is then a counterparty credit risk if one counterparty defaults when the
payment date is not synchronized with the delivery date. This settlement risk
is low when it is expressed as a percent of the notional because the maturity
mismatch is short, but it concerns large amounts. In a similar way, when an
OTC contract has a positive mark-to-market, the bank suffers a loss if the
counterparty defaults. To reduce this risk, the bank can put in place bilateral
netting agreements. We note that this risk disappears (or decreases) when the
bank uses an exchange, because the counterparty credit risk is transferred to
the central counterparty clearing house, which guarantees the expected cash
flows.

4.1.1 Definition

BCBS (2004) measures the counterparty credit risk by the replacement
cost of the OTC derivative. Let us consider two banks A and B that have
entered into an OTC contract. We assume that the bank B defaults before
the maturity of the contract. According to Pykhtin and Zhu (2006), Bank A
can then face two situations:

• The current value of the contract is negative. In this case, Bank A close
out the position and pays the market value of the contract to Bank B.
To replace the contract, Bank A can enter with another counterparty C

229
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into a similar contract. For that, Bank A receives the market value of
the contract and the loss of the bank is equal to zero.

• The current value of the contract is positive. In this case, Bank A close
out the position, but receives nothing from Bank B. To replace the
contract, Bank A can enter with another counterparty C into a similar
contract. For that, Bank A pays the market value of the contract to C.
In this case, the loss of the bank is exactly equal to the market value.

We note that the counterparty exposure is then the maximum of the market
value and zero. However, the counterparty credit risk differs from the credit
risk by two main aspects (Canabarro and Duffie, 2003):

1. The counterparty risk is bilateral, meaning that both counterparties may
face losses. In the previous example, Bank B is also exposed to the risk
that Bank A defaults.

2. The exposure at default is uncertain, because we don’t know what will
be the replacement cost of the contract when the counterparty defaults.

Using the notations introduced in the previous chapter, we deduce that the
credit loss of an OTC portfolio is:

L =

n∑
i=1

EADi (τi)× LGDi×1 {τ i ≤ Ti}

This is the formula of a credit portfolio loss, except that the exposure at
default is random and depends on different factors: the default time of the
counterparty, the evolution of market risk factors and the correlation between
the market value of the OTC contract and the default of the counterparty.

Let MtM (t) be the mark-to-market value of the OTC contract at time t.
The exposure at default is defined as:

EAD = max (MtM (τ) , 0)

If we consider a portfolio of OTC derivatives with the same counterparty
entity, the exposure at default is the sum of positive market values:

EAD =

n∑
i=1

max (MtMi (τ) , 0)

This is why the bank may be interested in putting in place a global netting
agreement:

EAD = max

(
n∑
i=1

MtMi (τ) , 0

)

≤
n∑
i=1

max (MtMi (τ) , 0)
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In practice, it is extremely complicated and rare that two counterparties suc-
ceed in signing such agreement. Most of the time, there are several netting
agreements on different trading perimeters (equities, bonds, interest-rate op-
tions, etc.). In this case, the exposure at default is:

EAD =
∑
k

max

(∑
i∈Nk

MtMi (τ) , 0

)
+
∑
i/∈∪Nk

max (MtMi (τ) , 0)

where Nk corresponds to the kth netting arrangement and defines a netting
set.

Example 35 Banks A and B have traded five OTC products, whose mark-
to-market values1 are given in the table below:

t 1 2 3 4 5 6 7 8

C1 5 5 3 0 −4 0 5 8
C2 −5 10 5 −3 −2 −8 −7 −10
C3 0 2 −3 −4 −6 −3 0 5
C4 2 −5 −5 −5 2 3 5 7
C5 −1 −3 −4 −5 −7 −6 −7 −6

If we suppose that there is no netting agreement, the counterparty exposure
of Bank A corresponds to the second row in Table 4.1. We notice that the
exposure changes over time. If there is a netting agreement, we obtain lower
exposures. We now consider a more complicated situation. We assume that
Banks A and B have two netting agreements: one on equity OTC contracts
(C1 and C2) and one on fixed-income OTC contracts (C3 and C4). In this case,
we obtain results given in the last row in Table 4.1. For instance, the exposure
at default for t = 8 is calculated as follows:

EAD = max (8− 10, 0) + max (5 + 7, 0) + max (−6, 0)

= 12

TABLE 4.1: Counterparty exposure of Bank A

t 1 2 3 4 5 6 7 8

No netting 7 17 8 0 2 3 10 20
Global netting 1 9 0 0 0 0 0 4
Partial netting 2 15 8 0 0 0 5 12

If we consider Bank B, the counterparty exposure are given in Table 4.2. This
illustrates the bilateral nature of the counterparty credit risk. Indeed, except if
there is a global netting arrangement, both banks have a positive counterparty
exposure.

1They are calculated from the viewpoint of Bank A.
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TABLE 4.2: Counterparty exposure of Bank B

t 1 2 3 4 5 6 7 8

No netting 6 8 12 17 19 17 14 16
Global netting 0 0 4 17 17 14 4 0
Partial netting 1 6 12 17 17 14 9 8

Remark 37 In the previous example, we have assumed that the mark-to-
market value of the OTC contract for one bank is exactly the opposite of the
mark-to-market value for the other bank. In practice, banks use mark-to-model
prices, implying that they can differ from one bank to another one.

4.1.2 Modeling the exposure at default

4.1.2.1 An illustrative example

Example 36 We consider a bank that buys 1 000 ATM call options, whose
maturity is one-year. The current value of the underlying asset is equal to
$100. We assume that the interest rate and the cost-of-carry parameter are
equal to 5%. Moreover, the implied volatility of the option is considered as a
constant and is equal to 20%.

By considering the previous parameters, the value C0 of the call option is
equal to $10.45. At time t, the mark-to-market of this derivative exposure is
defined by:

MtM (t) = nC × (C (t)− C0)

where nC and C (t) are the number and the value of call options. Let e (t) be
the exposure at default. We have:

e (t) = max (MtM (t) , 0)

At the initial date of the trade, the mark-to-market value and the counterparty
exposure are zero. When t > 0, the mark-to-market value is not equal to zero,
implying that the counterparty exposure e (t) may be positive. In Table 4.3,
we have reported the values taken by C (t), MtM (t) and e (t) for two scenarios
of the underlying price S (t). If we consider the first scenario, the counterparty
exposure is equal to zero during the fist three months, because the market-to-
market value was negative. The counterparty exposure is then positive for five
months. For instance, it is equal to $2 519 at the end of the fourth month2.
In the case of the second scenario, the counterparty exposure is always equal
to zero except for two months. Therefore, we notice that the counterparty

2We have:
MtM (t) = 1 000× (12.969− 10.450) = $2 519
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exposure is time-varying and depends of the trajectory of the underlying price.
This implies that the counterparty exposure cannot be calculated once and for
all at the initial date of the trade. Indeed, the counterparty exposure changes
with time. Moreover, we don’t known what will be the future price of the
underlying asset. That’s why we are going to simulate it.

TABLE 4.3: Mark-to-market and counterparty exposure of the call option

t
Scenario #1 Scenario #2

S (t) C (t) MtM (t) e (t) S (t) C (t) MtM (t) e (t)

1M 97.58 8.44 −2 013 0 91.63 5.36 −5 092 0
2M 98.19 8.25 −2 199 0 89.17 3.89 −6 564 0
3M 95.59 6.26 −4 188 0 97.60 7.35 −3 099 0
4M 106.97 12.97 2 519 2 519 97.59 6.77 −3 683 0
5M 104.95 10.83 382 382 96.29 5.48 −4 970 0
6M 110.73 14.68 4 232 4 232 97.14 5.29 −5 157 0
7M 113.20 16.15 5 700 5 700 107.71 11.55 1 098 1 098
8M 102.04 6.69 −3 761 0 105.71 9.27 −1 182 0
9M 115.76 17.25 6 802 6 802 107.87 10.18 −272 0

10M 103.58 5.96 −4 487 0 108.40 9.82 −630 0
11M 104.28 5.41 −5 043 0 104.68 5.73 −4 720 0
1Y 104.80 4.80 −5 646 0 115.46 15.46 5 013 5 013

We note MtM (t1; t2) the mark-to-market value between dates t1 and t2.
By construction, we have:

MtM (0; t) = MtM (0; t0) + MtM (t0; t)

where 0 is the initial date of the trade, t0 is the current date and t is the
future date. This implies that the mark-to-market value at time t has two
components:

1. the current mark-to-market value MtM (0; t0) that depends on the past
trajectory of the underlying price;

2. and the the future mark-to-market value MtM (t0; t) that depends on
the future trajectory of the underlying price.

In order to evaluate the second component, we need to define the probability
distribution of S (t). In our example, we can assume that the underlying price
follows a geometric Brownian motion:

dS (t) = µS (t) dt+ σS (t) dW (t)

We face here an issue because we have to define the parameters µ and σ. There
are two approaches:
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1. The first method uses the historical probability measure P, meaning that
the parameters µ and σ are estimated using historical data.

2. The second method considers the risk-neutral probability measure Q,
which is used to price the OTC derivative.

While the first approach is the more relevant to calculate the counterparty
exposure, the second approach is more frequent because it is easier for a
bank to implement it. Indeed, Q is already available because of the hedging
portfolio, which is not the case of P. In our example, this is equivalent to set
µ and σ to the interest rate r and the implied volatility Σ.

FIGURE 4.1: Density function of the counterparty exposure after six months

In Figure 4.1, we report an illustration of scenario generation when the
current date t0 is 6 months. This means that the trajectory of the asset price
S (t) is given when t ≤ t0 whereas it is simulated when t > t0. At time
t0 = 0.5, the asset price is equal to $114.77. We deduce that the option
price C (t0) is equal to $18.17. The mark-to-market value is then positive and
equal to $7 716. Using 10 000 simulated scenarios, we estimate the probability
density function of the mark-to-market value MtM (0; 1) at the maturity date
(bottom/left panel in Figure 4.1) and deduce the probability density function
of the counterparty exposure e (1) (bottom/right panel in Figure 4.1). We
notice that the probability that the mark-to-market value is negative at the
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maturity date is significant. Indeed, it is equal to 36% because it remains 6
months and the asset price may sufficiently decrease.

Remark 38 The mark-to-market value presents a very high skew, because it
is bounded. Indeed, the worst-case scenario is reached when S (1) is lower than
the strike. In this case, we obtain:

MtM (0; 1) = 1 000× (0− 10.45)

= −$10 450

We suppose now that the current date is nine months. During the last
three months, the asset price has changed and it is now equal to $129.49. The
current counterparty exposure has then increased and is equal to3 $20 294. In
Figure 4.2, we observe that the shape of the probability density functions has
changed. Indeed, the skew has been highly reduced. The reason is that it only
remains three months before the maturity date. The price is sufficiently high
that the probability to obtain a positive mark-to-market at the settlement
date is quasi equal to 100%. This is why the two probability density functions
are very similar.

FIGURE 4.2: Density function of the counterparty exposure after nine
months

3Using the previous parameters, the Black-Scholes price of the call option is now $30.74.
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We can use the previous approach of scenario generation in order to rep-
resent the evolution of counterparty exposure. In Figure 4.3, we consider two
observed trajectories of the asset price. For each trajectory, we report the cur-
rent exposure, the expected exposure and the 95% quantile of the counterparty
exposure at the maturity date. All these counterparty measures converge at
the maturity date, but differ before because of the uncertainty between the
current date and the maturity date.

FIGURE 4.3: Evolution of the counterparty exposure

4.1.2.2 Measuring the counterparty exposure

We define the counterparty exposure at time t as the random credit expo-
sure4:

e (t) = max (MtM (0; t) , 0) (4.1)

This counterparty exposure is also known as the potential future exposure
(PFE). When the current date t0 is not equal to the initial date 0, this coun-

4The definitions introduced in this paragraph come from Canabarro and Duffie (2003)
and the Basel II framework.
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terparty exposure can be decomposed in two parts:

e (t) = max (MtM (0; t0) + MtM (t0; t) , 0)

= max (MtM (0; t0) , 0) +

(max (MtM (0; t0) + MtM (t0; t) , 0)−max (MtM (0; t0) , 0))

The first component is the current exposure, which is always positive:

CE (t0) = max (MtM (0; t0) , 0)

The second component is the credit variation between t0 and t. It is a posi-
tive value if the current mark-to-market value is negative. However, the credit
variation may also be negative if the future mark-to-market value is negative.
Let us denote by F[0,t] the cumulative distribution function of the potential
future exposure e (t). The peak exposure (PE) is the quantile of the counter-
party exposure at the confidence level α:

PEα (t) = F−1
[0,t] (α)

= {inf x : Pr {e (t) ≤ x} ≥ α} (4.2)

The maximum value of the peak exposure is referred as the maximum peak
exposure5 (MPE):

MPEα (0; t) = sup
s

PEα (0; s) (4.3)

We now introduce the traditional counterparty credit risk measures:

• The expected exposure (EE) is the average of the distribution of the
counterparty exposure at the future date t:

EE (t) = E [e (t)]

=

∫ ∞
0

xdF[0,t] (x) (4.4)

• The expected positive exposure (EPE) is the weighted average over time
[0, t] of expected exposures:

EPE (0; t) = E
[

1

t

∫ t

0

e (s) ds

]
=

1

t

∫ t

0

EE (s) ds (4.5)

• The effective expected exposure (EEE) is the maximum expected expo-
sure that occurs at the future date t or any prior date:

EEE (t) = sup
s≤t

EE (s)

= max
(
EEE

(
t−
)
,EE (t)

)
(4.6)

5It is also known as the maximum potential future exposure (MPFE).
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• Finally, the effective expected positive exposure (EEPE) is the weighted
average over time [0, t] of effective expected exposures:

EEPE (0; t) =
1

t

∫ t

0

EEE (s) ds (4.7)

We can make several observations concerning the previous measures. Some
of them are defined with respect to the future date t. This is the case of PEα (t),
EE (t) and EEE (t). The others depend on a time period [0; t], typically a one-
year time horizon. Previously, we have considered the counterparty measure
e (t), which defines the potential future exposure between the initial date 0
and the future date t. We can also use other credit measures like the potential
future exposure between the current date t0 and the future date t:

e (t) = max (MtM (t0; t) , 0)

The counterparty exposure e (t) can be defined with respect to one contract
or to a basket of contracts. In this last case, we have to take into account
netting arrangements.

4.1.2.3 Practical implementation for calculating counterparty ex-
posure

We consider again Example 36 and assume that the current date t0 is the
initial date t = 0. Using 50 000 simulations, we have calculated the different
credit measures with respect to the time t and reported them in Figure 4.4.
For that, we have used the risk-neutral distribution probability Q in order to
simulate the trajectory of the asset price S (t). Let {t0, t1, . . . , tn} be the set of
discrete times. We note nS the number of simulations and Sj (ti) the value of
the asset price at time ti for the jth simulation. For each simulated trajectory,
we then calculate the option price Cj (ti) and the mark-to-market value:

MtMj (ti) = nC × (Cj (ti)− C0)

Therefore, we deduce the potential future exposure:

ej (ti) = max (MtMj (ti) , 0)

The peak exposure at time ti is estimated using order statistics:

PEα (ti) = eαnS :nS (ti) (4.8)

We use the empirical mean to calculate the expected exposure:

EE (ti) =
1

nS

nS∑
j=1

ej (ti) (4.9)
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For the expected positive exposure, we approximate the integral by the fol-
lowing sum:

EPE (0; ti) =
1

ti

i∑
k=1

EE (tk) ∆tk (4.10)

If we consider a fixed-interval scheme with ∆tk = ∆t, we obtain:

EPE (0; ti) =
∆t

ti

i∑
k=1

EE (tk)

=
1

i

i∑
k=1

EE (tk) (4.11)

By definition, the effective expected exposure is given by the following recur-
sive formula:

EEE (ti) = max (EEE (ti−1) ,EE (ti)) (4.12)

where EEE (0) is initialized with the value EE (0). Finally, the effective ex-
pected positive exposure is given by:

EEPE (0; ti) =
1

ti

i∑
k=1

EEE (tk) ∆tk (4.13)

In the case of a fixed-interval scheme, this formula becomes:

EEPE (0; ti) =
1

i

i∑
k=1

EEE (tk) (4.14)

If we consider Figure 4.4, we observe that the counterparty exposure is in-
creasing with respect to the horizon time6. This property is due to the fact
that the credit risk evolves according to a square-root-of-time rule

√
t. In the

case of an interest rate swap, the counterparty exposure takes the form of a
bell-shaped curve. In fact, there are two opposite effects that determine the
counterparty exposure (Pykhtin and Zhu, 2007):

• the diffusion effect of risk factors increases the counterparty exposure
over time, because the uncertainty is greater in the future and may
produce very large potential future exposures compared to the current
exposure;

• the amortization effect decreases the counterparty exposure over time,
because it reduces the remaining cash flows that are exposed to default.

In Figure 4.5, we have reported counterparty exposure in the case of an interest

6This implies that MPEα (0; t) = PEα (t) and EEE (t) = EE (t).
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FIGURE 4.4: Counterparty exposure profile of option

FIGURE 4.5: Counterparty exposure profile of interest rate swap
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swap with a continuous amortization7. The peak exposure initially increases
because of the diffusion effect and generally reaches its maximum at one-third
of the remaining maturity. It then decreases because of the amortization effect.
This is why it is equal to zero at the maturity date when the swap is fully
amortized.

4.1.3 Regulatory capital

The Basel II Accord includes three approaches to calculate the capital
requirement for the counterparty credit risk: current exposure method (CEM),
standardized method (SM) and internal model method (IMM). In March 2014,
the Basel Committee decided to replace non-internal model approaches (CEM
and SM) by a more sensitive approach called standardized approach (or SA-
CCR). The CEM and SM approaches continue to be valid until January 2017.
After this date, only SA-CCR and IMM approaches can be theoretically used8.

Each approach defines how the exposure at default EAD is calculated. The
bank uses this estimate with the appropriated credit approach (SA or IRB)
in order to measure the capital requirement. In the SA approach, the capital
charge is equal to:

K = 8%× EAD×RW

where RW is the risk weight of the counterparty. In the IRB approach, we
have:

K = EAD×LGD×

(
Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (0.999)√

1− ρ (PD)

)
− PD

)
×ϕ (M)

where LGD and PD are the loss given default and the probability of default,
which apply to the counterparty. The correlation ρ (PD) is calculated using
the standard formula (3.32) given in page 200.

Remark 39 Since the Basel III agreement, a 1.25 multiplier is applied to the
correlation ρ (PD):

ρ (PD) = 1.25×

(
12%× 1− e−50×PD

1− e−50
+ 24%×

1−
(
1− e−50×PD

)
1− e−50

)

= 15%× 1− e−50×PD

1− e−50
+ 30%×

1−
(
1− e−50×PD

)
1− e−50

for all exposures to systemically important financial intermediaries9, implying
that the correlation range increases from 12% − 24% to 15% − 30% (BCBS,
2010).

7The more realistic case of discrete amortization is addressed in Exercise 4.4.5 in page
259.

8For now, the SA-CCR approach has not been adopted by US and European legislations.
9They are regulated financial institutions (banks and insurance companies), with assets

of at least $100 bn and unregulated financial institutions, regardless of size.
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4.1.3.1 Internal model method

In the internal model method, the exposure at default is calculated as the
product of a scalar α and the one-year effective expected positive exposure10:

EAD = α× EEPE (0; 1)

The Basel Committee has set the value α at 1.4. The maturity M used in the
IRB formula is equal to one year if the remaining maturity is less or equal
than one year. Otherwise, it is calculated as follows11:

M = min

(
1 +

∑
k=1 1 {tk > 1}EE (tk) ∆tkB0 (tk)∑
k=1 1 {tk ≤ 1}EEE (tk) ∆tkB0 (tk)

, 5

)

Under some conditions, the bank may uses its own estimates for α. Let
LEE be the loan equivalent exposure such that:

K (LEE×LGD×1 {τ ≤ T}) = K (EAD (τ)× LGD×1 {τ ≤ T})

The loan equivalent exposure is then the deterministic exposure at default,
which gives the same capital than the random exposure at default EAD (τ).
Using a one-factor credit risk model, Canabarro et al. (2003) showed that:

α =
LEE

EPE

This is the formula that banks must use in order to estimate α, subject to a
floor of 1.2.

Example 37 We assume that the one-year effective expected positive exposure
with respect to a given counterparty is equal to $50.2 mn.

In Table 4.4, we have reported the required capital K for different values
of PD under the foundation IRB approach. The maturity M is set equal to
one year and we consider the 45% supervisory factor for the loss given default.
The exposure at default is calculated with α = 1.4. We show the impact of the
Basel III multiplier applied to the correlation. In this example, if the default
probability of the counterparty is equal to 1%, this induces an additional
required capital of 27.77%.

10If the remaining maturity τ of the product is less than one year, the exposure at default
becomes:

EAD = α× EEPE (0; τ)

11The maturity has then a cap of five years.
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TABLE 4.4: Capital charge of counterparty credit risk under the FIRB ap-
proach

Basel II ρ (PD) (in %) 19.28 16.41 14.68 13.62 12.99
K (in $ mn) 4.12 5.38 6.18 6.82 7.42

Basel III ρ (PD) (in %) 24.10 20.52 18.35 17.03 16.23
K (in $ mn) 5.26 6.69 7.55 8.25 8.89

∆K (in %) 27.77 24.29 22.26 20.89 19.88

4.1.3.2 Non-internal models methods (Basel II)

Under the current exposure method, we have:

EAD = CE (0) +A

where CE (0) is the current exposure and A is the add-on value. For a single
OTC transaction, A is the product of the notional and the add-on factor,
which is given in Table 4.5. For a portfolio of OTC transactions with netting
agreements, the exposure at default is the sum of the current net exposure
plus a net add-one value AN , which is defined as follows:

AN = (0.5 + 0.6×NGR)×AG

where AG =
∑
iAi is the gross add-on, Ai is the add-on of the ith transaction

and NGR is the ratio between the current net exposure and the current gross
exposure.

TABLE 4.5: Regulatory add-on factors for the current exposure method

Residual Fixed FX and Equity Precious Other
Maturity Income Gold Metals Commodities
0−1Y 0.0% 1.0% 8.0% 7.0% 10.0%
1Y−5Y 0.5% 5.0% 8.0% 7.0% 12.0%
5Y+ 1.5% 7.5% 10.0% 8.0% 15.0%

Example 38 We consider a portfolio of four OTC derivatives, which are
traded with the same counterparty:

Contract C1 C2 C3 C4
Asset class Fixed income Fixed income Equity Equity
Notional (in $ mn) 100 40 20 10
Maturity 2Y 6Y 6M 18M
Mark-to-market (in $ mn) 3.0 −2.0 2.0 −1.0

We assume that there is two netting arrangements: one concerning fixed in-
come derivatives and another one for equity derivatives.



244 Lecture Notes on Risk Management & Financial Regulation

In the case where there is not netting agreement, we obtain the following
results:

Contract C1 C2 C3 C4 Sum
CE (0) (in $ mn) 3.0 0.0 2.0 0.0 5.0
Add-on (in %) 0.5 1.5 8.0 8.0
A (in $ mn) 0.5 0.6 1.6 0.8 3.5

The exposure at default is then equal to $8.5 mn. If we take into account the
two netting agreements, the current net exposure becomes:

CE (0) = max (3− 2, 0) + max (2− 1, 0) = $2 mn

We deduce that NGR is equal to 2/5 or 40%. It follows that:

AN = (0.5 + 0.6× 0.4)× 3.5 = $2.59 mn

Finally, the exposure at default is equal to $4.59 mn.

The standardized method was designed for banks that do not have the
approval to apply the internal model method, but would like to have a more
sensitive approach that the current exposure method. In this framework, the
exposure at default is equal to:

EAD = β ×max

∑
i

CMVi,
∑
j

CCFj ×

∣∣∣∣∣∣
∑
i∈j

RPTi

∣∣∣∣∣∣


where CMVi is the current market value of transaction i, CCFj is the supervi-
sory credit conversion factor with respect to the hedging set j and RPTi is the
risk position from transaction i. The supervisory scaling factor β is set equal
to 1.4. In this approach, the risk positions have to be grouped into hedging
sets, which are defined by similar instruments (e.g. same commodity, same is-
suer, same currency, etc.). The risk position

∑
i∈j RPTi is the sum of notional

values of linear instruments and delta-equivalent notional values of non-linear
instruments, which belong to the hedging set j. The credit conversion factors
are given in Table 4.6.

TABLE 4.6: Supervisory credit conversion factors for the SM-CCR approach

Instruments FX Gold Equity Precious Electric Other
Metals Power Commodities

CCF 2.5% 5.0% 7.0% 8.5% 4.0% 10.0%

Instruments Debt OthersHigh specific risk Low specific risk
CCF 0.6% 0.3% 10%
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4.1.3.3 SA-CCR method (Basel IV)

The SA-CCR has been adopted by the Basel Committee in March 2014 in
order to replace non-internal models approaches in January 2017. The main
motivation the Basel Committee was to propose a more-sensitive approach,
which can easily be implemented:

“Although being more risk-sensitive than the CEM, the SM was
also criticized for several weaknesses. Like the CEM, it did not
differentiate between margined and unmargined transactions or
sufficiently capture the level of volatilities observed over stress pe-
riods in the last five years. In addition, the definition of hedging
set led to operational complexity resulting in an inability to im-
plement the SM, or implementing it in inconsistent ways” (BCBS,
2014b, page 1).

The exposure at default under the SA-CCR is defined as follows:

EAD = α× (RC + PFE)

where RC is the replacement cost (or the current exposure), PFE is the po-
tential future exposure and α is equal to 1.4. We can view this formula as an
approximation of the IMM calculation, meaning that RC + PFE represents a
stylized EEPE value. The PFE add-on is given by:

PFE = γ ×
5∑
C=1

A(C)

where γ is the multiplier and A(C) is the add-on of the asset class C (interest
rate, foreign exchange, credit, equity and commodity). We have:

γ = min

(
1, 0.05 + 0.95× exp

(
MtM

1.80×
∑5
C=1A

(C)

))

where MtM is the mark-to-market value of the derivative transactions. We
notice that γ is equal to 1 when the mark-to-market is positive and γ ∈ [5%, 1]
when the the mark-to-market is negative. Figure 4.6 shows the relationship
between the ratio MtM

/∑5
C=1A

(C) and the multiplier γ. The role of γ is then
to reduce the potential future exposure in the case of negative mark-to-market.

The general steps for calculating the add-on are the following. First, we
have to determine the primary risk factors of each transaction in order to
classify the transaction into one or more asset classes. Second, we calculate an
adjusted notional amount di at the transaction level12 and a maturity factor

12The trade-level adjusted notional di is defined as the product of current price of one
unit and the number of units for equity and commodity derivatives, the notional of the
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FIGURE 4.6: Impact of negative mark-to-market on the PFE multiplier

MF i, which reflects the time horizon appropriate for this type of transactions.
For unmargined transactions, we have:

MF i =
√

min (Mi, 1)

where Mi is the remaining maturity of the transaction. For margined trans-
actions, we have:

MF i =
3

2

√
M?
i

where M?
i is the appropriate margin period. Then, we apply a supervisory

delta adjustment ∆i to each transaction13 and a supervisory factor SF j to
each hedging set j in order to take volatility into account. The add-on of one

foreign currency leg converted to domestic currency for foreign exchange derivatives and
the product of the trade notional amount and the supervisory duration SDi for interest
rate and credit derivatives. The supervisory duration SDi is defined as follows:

SDi = 20×
(
e−0.05×Si − e−0.05×Ei

)
where Si and Ei are the start and end dates of the time period referenced by the derivative
instrument.

13For instance ∆i is equal to −1 for a short position, +1 for a long position, Black-Scholes’
delta for option position, etc.
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transaction i has then the following expression:

Ai = SF j × (∆i × di ×MF i)

Finally, we apply an aggregation method to calculate the add-on A(C) of the
asset class C by considering correlations between hedging sets. Here are the
formulas that determine the add-on values14:

• The add-on for interest rate derivatives is equal to:

A(ir) =
∑
j

SF j ×

√√√√ 3∑
k=1

3∑
k′=1

ρk,k′Dj,kDj,k′

where notations j and k refer to currency j and maturity bucket15 k
and the effective notional Dj,k is calculated according to:

Dj,k =
∑
i∈(j,k)

∆i × di ×MF i

• For foreign exchange derivatives, we obtain:

A(fx) =
∑
j

SF j ×

∣∣∣∣∣∣
∑
i∈j

∆i × di ×MF i

∣∣∣∣∣∣
where the hedging set j refers to currency pair j.

• The add-on values for credit and equity derivatives use the same formula:

A(credit/equity) =

√√√√(∑
k

ρkAk

)2

+
∑
k

(1− ρk)
2
A2
k

where k represents entity k and:

Ak = SFk ×
∑
i∈k

∆i × di ×MF i

• In the case of commodity derivatives, we have:

A(commodity) =
∑
j

√√√√(ρj∑
k

Aj,k

)2

+ (1− ρj)2
∑
k

A2
j,k

where j indicates the hedging set, k corresponds to the commodity type
and:

Aj,k = SF j,k ×
∑
i∈(j,k)

∆i × di ×MF i

14Derivation of these formulas is left as an exercise (see Exercise 4.4.6 in page 259).
15The three maturity buckets k are (1) less than one year, (2) between one and five years

and (3) more than five years.
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TABLE 4.7: Supervisory parameters for the SA-CCR approach

Asset class SF j ρk Σi

Interest rate
0−1Y 0.50% 100% 50%
1Y−5Y 0.50% 70% 100% 50%
5Y+ 0.50% 30% 70% 100% 50%

Foreign exchange 4.00% 15%

Credit

AAA 0.38% 50% 100%
AA 0.38% 50% 100%
A 0.42% 50% 100%
BBB 0.54% 50% 100%
BB 1.06% 50% 100%
B 1.60% 50% 100%
CCC 6.00% 50% 100%
IG index 0.38% 80% 80%
SG index 1.06% 80% 80%

Equity Single name 32.00% 50% 120%
Index 20.00% 80% 75%

Commodity

Electricity 40.00% 40% 150%
Oil & gas 18.00% 40% 70%
Metals 18.00% 40% 70%
Agricultural 18.00% 40% 70%
Other 18.00% 40% 70%

For interest rate, hedging sets correspond to all derivatives in the same cur-
rency (e.g. USD, EUR, JPY). For currency, they consists of all currency pairs
(e.g. USD/EUR, USD/JPY, EUR/JPY). For credit and equity, there is a
single hedging set, which contains all the entities (both single names and in-
dexes). Finally, they are four hedging sets for commodity derivatives: energy
(electricity, oil & gas), metals, agricultural and other. In Table 4.7, we give
the supervisory parameters for the factor SF j , the correlation16 ρk and the
implied volatility Σi in order to calculate Black-Scholes’ delta exposures.

Example 39 The following netting set consists of four interest rate deriva-
tives:

Trade Instrument Currency Maturity Swap Notional MtM
1 IRS USD 9M Payer 4 0.10
2 IRS USD 4Y Receiver 20 −0.20
3 IRS USD 10Y Payer 20 0.70
4 Swaption 10Y USD 1Y Receiver 5 0.50

16We notice that we consider cross-correlations between the three time buckets for interest
rate derivatives.
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For the swaption, we assume that the forward rate swap is 6% and the strike
value is 5%.

This netting set consists of only one hedging set, because the underlyings of
all these derivative instruments are USD interest rates. We report the different
calculations in the following table:

i k Si Ei SDi ∆i di MF i Di

1 1 0.00 0.75 0.74 1.00 2.94 0.87 2.55
2 2 0.00 4.00 3.63 −1.00 72.51 1.00 −72.51
3 3 0.00 10.00 7.87 1.00 157.39 1.00 157.39
4 3 1.00 11.00 7.49 −0.27 37.43 1.00 −10.08

where k indicates the time bucket, Si is the start date, Ei is the end date,
SDi is the supervisory duration, ∆i is the delta, di is the adjusted notional,
MF i is the maturity factor and Di is the effective notional. For instance, we
obtain the following results for the swaption transaction:

SDi = 20×
(
e−0.05×1 − e−0.05×10

)
= 7.49

∆i = −Φ

(
− ln (6%/5%)

0.5×
√

1
+

1

2
× 0.5×

√
1

)
= −0.27

di = 7.49× 5 = 37.43

MF i =
√

1 = 1

Di = −0.27× 37.43× 1 = −10.08

We deduce that the effective notional of time buckets is respectivelyD1 = 2.55,
D2 = −72.51 and D3 +D4 = 147.30. It follows that:∑3

k=1

∑3

k′=1
ρk,k′Dj,kDj,k′ = 2.552 − 2× 70%× 2.55× 72.51 +

72.512 − 2× 70%× 72.51× 147.30 +

147.302 + 2× 30%× 2.55× 147.30

= 11 976.1

While the supervisory factor is 0.50%, the add-on value A(ir) is then equal to
0.55. The replacement cost is:

RC = max (0.1− 0.2 + 0.7 + 0.5, 0) = 1.1

Because the mark-to-market of the netting set is positive, the PFE multiplier
is equal to 1. We finally deduce that:

EAD = 1.4× (1.1 + 1× 0.55)

= 2.31

Remark 40 Annex 4 of BCBS (2014b) contains four examples of SA-CCR
calculations. Exercise 4.4.7 in page 259 presents also several applications in-
cluding different hedging sets, netting sets and asset classes.
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4.1.4 Impact of wrong-way risk

4.2 Credit valuation adjustment
CVA is the adjustment to the risk-free (or fair) value of derivative in-

struments to account for counterparty credit risk. Thus, CVA is commonly
viewed as the market price of CCR. The concept of CVA was popularized af-
ter the 2008 financial crisis, even if investments bank started to use CVA in the
early 1990s (Litzenberger, 1992; Duffie and Huang, 1996). Indeed, during the
global financial crisis, banks suffered significant counterparty credit risk losses
on their OTC derivatives portfolios. However, according to BCBS (2011),
roughly two-thirds of these losses came from CVA markdowns on derivatives
and only one-third were due to counterparty defaults. In a similar way, the
Financial Service Authority concluded that CVA losses were five times larger
than CCR losses for UK banks during the period 2007-2009. In this context,
BCBS (2011) included CVA capital charge in the Basel III framework, whereas
credit-related adjustments were introduced in the accounting standard IFRS
13 also called Fair Value Measurement17. Nevertheless, the complexity of CVA
raises several issues (EBA, 2015a). This is why questions around the CVA are
not stabilized and new standards are emerging, but they only provide partial
answers.

4.2.1 Definition

4.2.1.1 Difference between CCR and CVA

In order to understand the credit valuation adjustment, it is important
to make the distinction between CCR and CVA. CCR is the credit risk of
OTC derivatives associated to the default of the counterparty, whereas CVA
is the market risk of OTC derivatives associated to the credit migration of
the two counterparties. This means that CCR occurs at the default time. On
the contrary, CVA impacts the market value of OTC derivatives before the
default time.

Let us consider an example with two banks A and B and an OTC contract
C. The P&L ΠA|B of Bank A is equal to:

ΠA|B = MtM−CVAB

where MtM is the risk-free mark-to-market value of C and CVAB is the CVA
with respect to Bank B. We assume that Bank A has traded the same contract
with Bank C. It follows that:

ΠA|C = MtM−CVAC

17IFRS 13 was originally issued in May 2011 and became effective after January 2013.
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In a world where there is no counterparty credit risk, we have:

ΠA|B = ΠA|C = MtM

If we take into account the counterparty credit risk, the two P&Ls of the same
contract are different because Bank A does not face the same risk:

ΠA|B 6= ΠA|C

In particular, if Bank A want to close the two exposures, it is obvious that the
contact C with the counterparty B has more value than the contact C with
the counterparty C if the credit risk of B is lower than the credit risk of C.
In this context, the notion of mark-to-market is complex, because it depends
on the credit risk of the counterparties.

Remark 41 If the bank does not take into account CVA to price its OTC
derivatives, it does not face CVA risk. This situation is now marginal, because
of the accounting standards IFRS 13.

4.2.1.2 CVA, DVA and bilateral CVA

In the previous section, we have defined the CVA as the market risk related
to the credit risk of the counterparty. According to EBA (2015), it should
reflect today’s best estimate of the potential loss on the OTC derivative due to
the default of the counterparty. In a similar way, we can define the debit value
adjustment (DVA) as the credit-related adjustment capturing the entity’s own
credit risk. In this case, DVA should reflect the potential gain on the OTC
derivative due to the entity’s own default. If we consider our previous example,
the expression of the P&L becomes:

ΠA|B = MtM + DVAA−CVAB︸ ︷︷ ︸
Bilateral CVA

The combination of the two credit-related adjustments is called the bivariate
CVA. We then obtain the following cases:

1. If the credit risk of Bank A is lower than the credit risk of Bank B
(DVAA < CVAB), the bilateral CVA of Bank A is negative and reduces
the value of the OTC portfolio from the perspective of Bank A.

2. If the credit risk of Bank A is higher than the credit risk of Bank B
(DVAA > CVAB), the bilateral CVA of Bank A is positive and increases
the value of the OTC portfolio from the perspective of Bank A.

3. If the credit risk of Bank A is equivalent to the credit risk of Bank B,
the bilateral CVA is equal to zero.



252 Lecture Notes on Risk Management & Financial Regulation

We notice that the DVA of Bank A is the CVA of Bank A from the perspective
of Bank B:

CVAA = DVAA

We also have DVAB = CVAB , which implies that the P&L of Bank B is equal
to:

ΠB|A = −MtM + DVAB −CVAA

= −MtM + CVAB −DVAA

= −ΠA|B

We deduce that the P&Ls of Banks A and B are coherent in the bilateral
CVA framework as in the risk-free MtM framework. This is not true if we
only consider the (unilateral or one-sided) CVA or the DVA adjustments.

In order to define more precisely CVA and DVA, we introduce the following
notations:

• The positive exposure e+ (t) is the maximum between 0 and the risk-free
mark-to-market:

e+ (t) = max (MtM (t) , 0)

This quantity was previously noted e (t) and corresponds to the potential
future exposure in the CCR framework.

• The negative exposure e− (t) is the difference between the risk-free mark-
to-market and the positive exposure:

e− (t) = MtM (t)− e+ (t)

We have also:

e− (t) = −min (MtM (t) , 0)

= max (−MtM (t) , 0)

The negative exposure is then the equivalent of the positive exposure
from the perspective of the counterparty.

The credit value adjustment is the risk-neutral discounted expected value
of the potential loss:

CVA = EQ
[
1 {τB ≤ T} × e−

∫ τB
0 rt dt × L

]
where T is the maturity of the OTC derivative, τB is the default time of Bank
B and:

L = (1−RB)× e+ (τB)
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Using usual assumptions18, we obtain:

CVA = (1−RB)×
∫ T

0

B0 (t) EpE (t) dFB (t)

where EpE (t) is the risk-neutral discounted expected positive exposure:

EpE (t) = EQ [e+ (t)
]

and FB is the cumulative distribution function of τB . Knowing that the sur-
vival function SB (t) is equal to 1− FB (t), we deduce that:

CVA = (1−RB)×
∫ T

0

−B0 (t) EpE (t) dSB (t) (4.15)

In a similar way, the debit value adjustment is defined as the risk-neutral
discounted expected value of the potential gain:

DVA = EQ
[
1 {τA ≤ T} × e−

∫ τA
0 rt dt ×G

]
where τA is the default time of Bank A and:

G = (1−RA)× e− (τA)

Using the same assumptions than previously, it follows that:

DVA = (1−RA)×
∫ T

0

−B0 (t) EnE (t) dSA (t) (4.16)

where EnE (t) is the risk-neutral discounted expected negative exposure:

EnE (t) = EQ [e− (t)
]

We deduce that the bilateral CVA is:

BCVA = DVA−CVA

= (1−RA)×
∫ T

0

−B0 (t) EnE (t) dSA (t)−

(1−RB)×
∫ T

0

−B0 (t) EpE (t) dSB (t) (4.17)

When we calculate the bilateral CVA as the difference between the DVA and
the CVA, we consider that the DVA does not depend on τB and the CVA
does not depend on τA. In the more general case, we have:

BCVA = EQ

[
1 {τA ≤ min (T, τB)} × e−

∫ τA
0 rt dt ×G−

1 {τB ≤ min (T, τA)} × e−
∫ τB
0 rt dt × L

]
(4.18)

In this case, the calculation of the bilateral CVA requires to consider the joint
survival function of (τA, τB).

18The default time and the discount factor are independent and the recovery rate is
constant.
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Remark 42 In practice, we calculate CVA and DVA by approximating the
integral by a sum:

CVA = (1−RB)×
∑
ti≤T

B0 (ti) EpE (ti) (SB (ti−1)− SB (ti))

DVA = (1−RA)×
∑
ti≤T

B0 (ti) EnE (ti) (SA (ti−1)− SA (ti))

where {ti} is a partition of [0, T ]. For the bilateral CVA, the expression (4.18)
can be evaluated using Monte Carlo methods.

4.2.2 Regulatory capital

4.2.2.1 Advanced method

The advanced method (or AM-CVA) can be considered by banks that use
IMM and VAR models. In this approach, we approximate the integral by the
middle Riemann sum:

CVA = LGDB

∑
ti≤T

(
EpE (ti−1)B0 (ti−1) +B0 (ti) EpE (ti)

2

)
×PDB (ti−1, ti)

where LGD = 1−RB is risk-neutral loss given default of the counterparty B
and PDB (ti−1, ti) is the risk neutral probability of default between ti−1 and
ti. Using the credit triangle relationship, we know that the spread s of the
CDS is related to the intensity λ:

sB (t) = (1−RB)× λB (t)

We deduce that:

SB (t) = exp (−λB (t)× t)

= exp

(
− s (t)

LGDB
× t
)

It follows that the risk neutral probability of default PDB (ti−1, ti) is equal
to19:

PDB (ti−1, ti) = max (SB (ti−1)− SB (ti) , 0)

= max

(
exp

(
−s (ti−1)

LGDB
× ti−1

)
− exp

(
− s (ti)

LGDB
× ti

)
, 0

)

In the advanced approach, the capital charge is equal to:

K = 3× (CVA + SCVA)

where CVA is calculated using the last one-year period and SCVA is the
stressed CVA based on a one-year stressed period of credit spreads.

19A zero floor is added in order to verify that PDB (ti−1, ti) ≥ 0.
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4.2.2.2 Standardized method

In the standardized method (or SM-CVA), the capital charge is equal to:

K = 2.33×
√
h×

√√√√(1

2

∑
i

wiΩi − w?indexΩ?index

)2

+
3

4

∑
i

w2
iΩ

2
i (4.19)

with:

Ωi = Mi × EADi−M?
i ×H?

i

Ω?index = M?
index ×H?

index

In this formula, h is the time horizon (one year), wi is the weight of the ith
counterparty based on its rating, Mi is the effective maturity of the ith netting
set, EADi is the exposure at default of the ith netting set, M?

i is the maturity
adjustment factor for the single name hedge, H?

i is the hedging notional of
the single name hedge, w?index is the weight of the index hedge, M?

index is the
maturity adjustment factor for the index hedge and H?

index is the hedging
notional of the index hedge. In this formula, EADi corresponds to the CCR
exposure at default calculated with the CEM or IMM approaches.

Remark 43 We notice that the Basel Committee recognizes credit hedges
(single name CDS, contingent CDS and CDS indexes) for reducing CVA
volatility. If there is no hedge, we obtain:

K = 2.33×
√
h×

√√√√1

4

(∑
i

wi ×Mi × EADi

)2

+
3

4

∑
i

w2
i ×M2

i × EAD2
i

The derivation of Equation (4.19) is explained in Pykhtin (2012). We con-
sider a Gaussian random vector X = (X1, . . . , Xn) with Xi ∼ N

(
0, σ2

i

)
. We

assume that the random variables X1, . . . , Xn follow a single risk factor model
such that the correlations ρ (Xi, Xj) are constant and equal to ρ. We consider
another random variable Xn+1 ∼ N

(
0, σ2

n+1

)
such that ρ (Xi, Xn+1) is also

constant and equal to ρn+1. Let Y be the random variable defined as the sum
of Xi’s minus Xn+1:

Y =

n∑
i=1

Xi −Xn+1

It follows that Y ∼ N
(
0, σ2

Y

)
with:

σ2
Y =

n∑
i=1

σ2
i + 2ρ

n∑
i=1

i∑
j=1

σiσj − 2ρn+1σn+1

n∑
i=1

σi + σ2
n+1

We finally deduce that:

F−1
Y (α) = Φ−1 (α)

√√√√ n∑
i=1

σ2
i + 2ρ

n∑
i=1

i∑
j=1

σiσj − 2ρn+1σn+1

n∑
i=1

σi + σ2
n+1
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Equation (4.19) is obtained by setting σi = wiΩi, σn+1 = w?indexΩ?index, ρ =
25%, ρn+1 = 50% and α = 99%. This means that Xi is the CVA net exposure
of the ith netting set (including individual hedges) and Xn+1 is the macro
hedge of the CVA based on credit indexes.

4.2.2.3 Basel IV standardized approach (SA-CVA)

4.2.3 Impact of CVA on the banking industry

4.3 Collateral risk
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4.4 Exercises

4.4.1 Impact of netting agreements in counterparty credit
risk

The table below gives the current mark-to-market of 7 OTC contracts
between Bank A and Bank B:

Equity Fixed income FX
C1 C2 C3 C4 C5 C6 C7

A +10 −5 +6 +17 −5 −5 +1
B −11 +6 −3 −12 +9 +5 +1

The table should be read as follows: Bank A has a mark-to-market equal to
10 for the contract C1 whereas Bank B has a mark-to-market equal to −11 for
the same contract, Bank A has a mark-to-market equal to −5 for the contract
C2 whereas Bank B has a mark-to-market equal to +6 for the same contract,
etc.

1. (a) Explain why there are differences between the MtM values of a
same OTC contract.

(b) Calculate the exposure at default of Bank A.
(c) Same question if there is a global netting agreement.
(d) Same question if the netting agreement only concerns equity prod-

ucts.

2. In the following, we measure the impact of netting agreements on the
exposure at default.

(a) We consider a first OTC contract C1 between Bank A and Bank
B. The mark-to-market MtM1 (t) of Bank A for the contract C1 is
defined as follows:

MtM1 (t) = x1 + σ1W1 (t)

where W1 (t) is a Brownian motion. Calculate the potential future
exposure of Bank A.

(b) We consider a second OTC contract between Bank A and Bank B.
The mark-to-market is also given by the following expression:

MtM2 (t) = x2 + σ2W2 (t)

where W2 (t) is a second Brownian motion that is correlated with
W1 (t). Let ρ be this correlation such that E [W1 (t)W2 (t)] = ρt.
Calculate the expected exposure of bank A if there is no netting
agreement.



258 Lecture Notes on Risk Management & Financial Regulation

(c) Same question when there is a global netting agreement between
Bank A and Bank B.

(d) Comment on these results.

4.4.2 Calculation of the effective expected positive exposure

We denote by e (t) the potential future exposure of an OTC contract with
maturity T . The current date is set to t = 0.

1. Define the concepts of peak exposure PEα (t), maximum peak expo-
sure MPEα (0; t), expected exposure EE (t), expected positive exposure
EPE (0; t), effective expected exposure EEE (t) and effective expected
positive exposure EEPE (0; t).

2. Calculate these different quantities when the potential future exposure
is e (t) = σ

√
tX with X ∼ U[0,1].

3. Same question when e (t) = exp
(
σ
√
tX
)
with X ∼ N (0, 1).

4. Same question when e (t) = σ
(
t3 − 7

3Tt
2 + 4

3T
2t
)
X with X ∼ U[0,1].

5. Same question when e (t) = σ
√
tX where X is a random variable defined

on [0, 1] with the following probability density function20:

f (x) =
xa

a+ 1

6. Comment on these results.

4.4.3 Calculation of the capital charge for counterparty
credit risk

We denote by e (t) the potential future exposure of an OTC contract with
maturity T . The current date is set to t = 0. Let N and σ be the notional
and the volatility of the underlying contract. We assume that e (t) = Nσ

√
tX

with 0 ≤ X ≤ 1, Pr {X ≤ x} = xγ and γ > 0.

1. Calculate the peak exposure PEα (t), the expected exposure EE (t) and
the effective expected positive exposure EEPE (0; t).

2. The bank manages the credit risk with the foundation IRB approach
and the counterparty credit risk with an internal model. We consider an
OTC contract with the following parameters: N is equal to $3 mn, the
maturity T is one year, the volatility σ is set to 20% and γ is estimated
at 2.

20We assume that a > 0.
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(a) Calculate the exposure at default EAD knowing that the bank uses
the regulatory value for the parameter α.

(b) The default probability of the counterparty is estimated at 1%.
Calculate then the capital charge for counterparty credit risk of
this OTC contract21.

4.4.4 Illustration of the wrong-way risk

4.4.5 Counterparty exposure of interest rate swap

4.4.6 Derivation of SA-CCR formulas

4.4.7 Examples of SA-CCR calculation

4.4.8 Calculation of CVA and DVA measures

We consider an OTC contract with maturity T between Bank A and Bank
B. We denote by MtM (t) the risk-free mark-to-market of Bank A. The current
date is set to t = 0 and we assume that:

MtM (t) = Nσ
√
tX

where N is the notional of the OTC contract, σ is the volatility of the un-
derlying asset and X is a random variable, which is defined on the support
[−1, 1] and whose density function is:

f (x) =
1

2

1. Define the concept of positive exposure e+ (t). Show that the cumulative
distribution function F[0,t] of e+ (t) has the following expression:

F[0,t] (x) = 1
(

0 ≤ x ≤ σ
√
t
)
·
(

1

2
+

x

2Nσ
√
t

)
where F[0,t] (x) = 0 if x ≤ 0 and F[0,t] (x) = 1 if x ≥ σ

√
t.

2. Deduce the value of the expected positive exposure EpE (t).

3. We note RB the fixed and constant recovery rate of Bank B. Give the
mathematical expression of the CVA.

4. By using the definition of the lower incomplete gamma function γ (s, x),
show that the CVA is equal to:

CVA =
N (1−RB)σγ

(
3
2 , λBT

)
4
√
λB

21We will take a value of 70% for the LGD parameter and a value of 20% for the default
correlation. We can also use the approximation Φ(−1) ' 16%.
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when the default time of Bank B is exponential with parameter λB and
interest rates are equal to zero.

5. Comment on this result.

6. By assuming that the default time of Bank A is exponential with param-
eter λA, deduce the value of the DVA without additional computations.



Chapter 5
Operational Risk

The integration of operational risk into the Basel II Accord was a long pro-
cess because of the hostile reaction from the banking sector. At the end of the
1990s, the risk of operational losses was perceived as relatively minor. However,
some events had shown that it was not the case. The most famous example
was the bankruptcy of the Barings Bank in 1995. The loss of $1.3 bn was
due to a huge position of the trader Nick Leeson in futures contracts without
authorization. Other examples included the money laundering in Banco Am-
brosiano Vatican Bank (1983), the rogue trading in Sumitomo Bank (1996),
the headquarter fire of Crédit Lyonnais (1996), etc. Since the publication of
the CP2 in January 2001, the position of banks has significantly changed and
operational risk is today perceived as a major risk of the banking industry.
Management of operational risk has been strengthened, with the creation of
dedicated risk management units, the appointment of compliance officers and
the launch of anti-money laundering programs.

5.1 Definition of operational risk

The Basel Committee defines the operational risk in the following way:

“Operational risk is defined as the risk of loss resulting from in-
adequate or failed internal processes, people and systems or from
external events. This definition includes legal risk, but excludes
strategic and reputational risk” (BCBS, 2006, page 144).

The operational risk recovers then all the losses of the bank that cannot be
attributed to market and credit risk. Nevertheless, losses which result from
strategic decisions are not taken into account. An example is the purchase of
a software or an information system, which is not relevant for the firm. Losses
due to reputational risk are also excluded from the definition of operational
risk. They are generally caused by an event, which is related to another risk.
The difficulty is to measure the indirect loss of such event in terms of business.
For instance, if we consider the diesel emissions scandal of Volkswagen, we can
estimate the losses due to the recall of cars, class action lawsuits and potential

261
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fines. However, it is impossible to know what will be the impact of this event
on the future sales and the market share of Volkswagen.

In order to better understand the concept of operational risk, we give here
the loss even type classification adopted by the BCBS:

1. Internal fraud (“losses due to acts of a type intended to defraud, misap-
propriate property or circumvent regulations, the law or company policy,
excluding diversity/discrimination events, which involves at least one in-
ternal party”)

(a) Unauthorized activity

(b) Theft and fraud

2. External fraud (“ losses due to acts of a type intended to defraud, mis-
appropriate property or circumvent the law, by a third party”)

(a) Theft and fraud

(b) Systems security

3. Employment practices and workplace safety (“losses arising from acts
inconsistent with employment, health or safety laws or agreements,
from payment of personal injury claims, or from diversity/discrimination
events”)

(a) Employee relations

(b) Safe environment

(c) Diversity & discrimination

4. Clients, products & business practices (“ losses arising from an uninten-
tional or negligent failure to meet a professional obligation to specific
clients (including fiduciary and suitability requirements), or from the
nature or design of a product”)

(a) Suitability, disclosure & fiduciary

(b) Improper business or market practices

(c) Product flaws

(d) Selection, sponsorship & exposure

(e) Advisory activities

5. Damage to physical assets (“losses arising from loss or damage to phys-
ical assets from natural disaster or other events”)

(a) Disasters and other events
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6. Business disruption and system failures (“ losses arising from disruption
of business or system failures”)

(a) Systems

7. Execution, delivery & process management (“losses from failed transac-
tion processing or process management, from relations with trade coun-
terparties and vendors”)

(a) Transaction capture, execution & maintenance

(b) Monitoring and reporting

(c) Customer intake and documentation

(d) Customer/client account management

(e) Trade counterparties

(f) Vendors & suppliers

This is a long list of loss types, because the banking industry has been a
fertile ground for operational risks. We have already cited some well-know
operational losses before the crisis. In 2009, the Basel Committee has pub-
lished the results of a loss data collection exercise. For this LDCE, 119 banks
submitted a total of 10.6 million internal losses with an overall loss amount
of e59.6 bn. The largest 20 losses represented a total of e17.6 bn. In Table
5.1, we have reported statistics of the loss data, when the loss is larger than
e20 000. For each year, we indicate the number nL of losses, the total loss
amount L and the number nB of reporting banks. Each bank experienced
more than 300 losses larger than e20 000 per year on average. We also notice
that these losses represented about 90% of the overall loss amount.

TABLE 5.1: Internal losses larger than e20 000 by year

Year pre 2002 2002 2003 2004 2005 2006 2007
nL 14 017 10 216 13 691 22 152 33 216 36 386 36 622
L (in e bn) 3.8 12.1 4.6 7.2 9.7 7.4 7.9
nB 24 35 55 68 108 115 117

Source: BCBS (2009d).

Since 2008, operational risk has dramatically increased. For instance, rogue
trading has impacted many banks and the magnitude of these unauthorized
trading losses is much higher than before1. The Libor interest rate manipu-
lation scandal led to very large fines ($2.5 bn for Deutsche Bank, $1 bn for
Rabobank, $545 mn for UBS, etc.). In May 2015, six banks (Bank of America,
Barclays, Citigroup, JP Morgan, UBS and RBS) agreed to pay fines totaling

1We can cite Société Générale in 2008 ($7.2 bn), Morgan Stanley in 2008 ($9.0 bn),
BPCE in 2008 ($1.1 bn), UBS in 2011 ($2 bn) and JPMorgan Chase in 2012 ($5.8 bn).
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$5.6 bn in the case of the forex scandal2. The anti-money laundering controls
led BNP Paribas to pay a fine of $8.9 bn in June 2014 to the US federal govern-
ment. In this context, operational risk, and more specifically compliance and
legal risk, is a major concern for banks. It is an expansive risk, because of the
direct losses, but also because of the indirect costs induced by the proliferation
of internal controls and security infrastructure3.

Remark 44 Operational risk is not limited to the banking sector. Other fi-
nancial sectors have been impacted by such risk. The most famous example is
the Ponzi scheme organized by Bernard Madoff, which caused a loss of $50 bn
to his investors.

5.2 Basel approaches for calculating the regulatory cap-
ital

In this approach, we present the three approaches described in the Basel
II framework in order to calculate the capital charge for operational risk:

1. the basic indicator approach (BIA);

2. the standardized approach (TSA);

3. and advanced measurement approaches (AMA).

We also present the proposed revisions of the Basel Committee to the stan-
dardized approach for measuring operational risk capital. Once finalized, the
revised standardized approach will replace the current non-model-based ap-
proaches, which comprise BIA and TSA.

5.2.1 The basic indicator approach

The basic indicator approach is the simplest method for calculating the
operational risk capital requirement. In this case, the capital charge is a fixed
percentage of annual gross income:

K = α×GI

2The Libor scandal was a series of fraudulent actions connected to the Libor (London
Interbank Offered Rate), while the forex scandal concerns several banks, which have manip-
ulated exchange rates via electronic chatrooms in which traders discussed the trades they
planned to do.

3A typical example of expansive costs is the risk of cyber attack.
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where α is set equal to 15% and GI is the average of the positive gross income
over the previous three years:

GI =
max (GIt−1, 0) + max (GIt−2, 0) + max (GIt−3, 0)∑3

k=1 1 {GIt−k > 0}

In this approach, the capital charge is related to the financial results of the
bank, but not to its risk exposure.

5.2.2 The standardized approach

The standardized approach is an extended version of the previous method.
In this case, the bank are divided into eight business lines, which are given in
Table 5.2. The bank then calculates the capital charge for each business lines:

Kj,t = βj ×GIj,t

where βj and GIj,t are a fixed percentage4 and the gross income corresponding
to the jth business line. The total capital charge is the three-year average of
the sum of all capital charges:

K =
1

3

3∑
k=1

max

 8∑
j=1

Kj,t−k, 0


We notice that a negative capital charge in one business line may offset positive
capital charges in other business lines. If the values of gross income are all
positive, the total capital charge becomes:

K =
1

3

3∑
k=1

8∑
j=1

βj ×GIj,t−k

=

8∑
j=1

βj ×GIj

where GIj is the average gross income over the previous three years of the jth

business line.

Example 40 We consider Bank A, whose activity is mainly driven by retail
banking and asset management. We compare it with Bank B, which is more
focused on corporate finance. We assume that the two banks are only composed
of four business lines: corporate finance, retail banking, agency services and
asset management. The gross income expressed in $ mn for the last three years

4The values taken by the beta coefficient are reported in Table 5.2.
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TABLE 5.2: Mapping of business lines for operational risk

Level 1 Level 2 βj

Corporate Finance†
Corporate Finance

18%
Municipal/Government Finance
Merchant Banking
Advisory Services

Trading & Sales‡
Sales

18%
Market Making
Proprietary Positions
Treasury

Retail Banking
Retail Banking

12%Private Banking
Card Services

Commercial Banking\ Commercial Banking 12%

Payment & Settlement External Clients 18%

Agency Services
Custody

15%Corporate Agency
Corporate Trust

Asset Management Discretionary Fund Management
12%Non-Discretionary Fund Management

Retail Brokerage Retail Brokerage 12%

†Mergers and acquisitions, underwriting, securitization, syndications, IPO, debt placements.
‡Buying and selling of securities and derivatives, own position securities, lending and repos,
brokerage. \Project finance, real estate, export finance, trade finance, factoring, leasing,
lending, guarantees, bills of exchange.

is given below:

Business line Bank A Bank B
t− 1 t− 2 t− 3 t− 1 t− 2 t− 3

Corporate finance 10 15 −30 200 300 150
Retail banking 250 230 205 50 45 −30
Agency services 10 10 12
Asset management 70 65 72 12 8 −4

For Bank A, we obtain GIt−1 = 340, GIt−2 = 320 and GIt−3 = 259. The
average gross income is then equal to 306.33, implying that the BIA capital
charge KBIA

A is equal to $45.95 mn. If we consider Bank B, the required
capital KBIA

B is lower and equal to $36.55 mn. In the case of the standardized
approach, the beta coefficients are respectively equal to 18%, 12%, 15% and
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12%. We deduce that:

KTSA
A =

1

3
× (max (18%× 10 + 12%× 250 + 15%× 10 + 12%× 70, 0) +

max (18%× 15 + 12%× 230 + 15%× 10 + 12%× 65, 0) +

max (−18%× 30 + 12%× 205 + 15%× 12 + 12%× 72, 0))

= $36.98 mn

We also have KTSA
B = $42.24 mn. We notice that KBIA

A > KTSA
A and

KBIA
B < KTSA

B . Bank A has a lower capital charge when using TSA instead of
BIA, because it is more exposed to low-risk business lines (retail banking and
asset management). For Bank B, it is the contrary because its main exposure
concerns high-risk business lines (corporate finance). However, if we assume
that the gross income of the corporate finance for Bank B at time t−3 is equal
to −150 instead of +150, we obtain KBIA

B = $46.13 mn and KTSA
B = $34.60

mn. In this case, the TSA approach is favorable, because the gross income at
time t − 3 is negative implying that the capital contribution at time t − 3 is
equal to zero.

Contrary to the basic indicator approach that requires no criteria to be
used, banks must satisfy a list of qualifying criteria for the standardized ap-
proach. For instance, the board of directors is actively involved in the oversight
of the operational risk management framework and each business lines has suf-
ficient resources to manage operational risk. Internationally active banks must
also collect operational losses and use this information for taking appropriate
action.

5.2.3 Advanced measurement approaches

Like the internal model-based approach for market risk, the AMA method
is defined by certain criteria without refereing to a specific statistical model:

• The capital charge should cover the one-year operational loss at the
99.9% confidence level. It corresponds to the sum of expected loss (EL)
and unexpected loss (UL).

• The model must be estimated using a minimum five-year observation
period of internal loss data, and capture tail loss events by considering
for example external loss data when it is needed. It must also include
scenario analysis and factors reflecting internal control systems.

• The risk measurement system must be sufficiently granular to capture
the main operational risk factors. By default, the operational risk of the
bank must be divided into the 8 business lines and the 7 event types. For
each cell of the matrix, the model must estimate the loss distribution
and may use correlations to perform the aggregation.
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• The allocation of economic capital across business lines must create in-
centives to improve operational risk management.

• The model can incorporate the risk mitigation impact of insurance,
which is limited to 20% of the total operational risk capital charge.

The validation of the AMA model does not only concern the measurement
aspects, but also the soundness of the entire operational risk management
system. This concerns governance of operational risk, dedicated resources,
management structure, risk cartography and key risk indicators (KRI), no-
tification and action procedures, emergency and crisis management, business
continuity and disaster recovery plans.

In order to better understand the challenges of an internal model, we have
reported in Table 5.3 the distribution of annualized loss amounts by busi-
ness line and event type obtained with the 2008 loss data collection exercise.
We first notice an heterogeneity between business lines. For instance, losses
were mainly concentrated in the fourth event type (clients, products & busi-
ness practices) for the corporate finance business line (93.7%) and the seventh
event type (execution, delivery & process management) for the payment & set-
tlement business line (76.4%). On overage, these two event types represented
more than 75% of the total loss amount. In contrast, fifth and sixth event
types (damage to physical assets, business disruption and system failures)
had a small contribution close to 1%. We also notice that operational losses
mainly affected retail banking, followed by corporate finance and trading &
sales. One of the issue is that this picture of operational risk is no longer valid
after 2008 with the increase of losses in trading & sales, but also in payment
& settlement. The nature of operational risk changes over time, which is a big
challenge to build an internal model to calculate the required capital.

TABLE 5.3: Distribution of annualized operational losses (in %)

Business line Event type All
1 2 3 4 5 6 7

Corporate Finance 0.2 0.1 0.6 93.7 0.0 0.0 5.4 28.0
Trading & Sales 11.0 0.3 2.3 29.0 0.2 1.8 55.3 13.6
Retail Banking 6.3 19.4 9.8 40.4 1.1 1.5 21.4 32.0
Commercial Banking 11.4 15.2 3.1 35.5 0.4 1.7 32.6 7.6
Payment & Settlement 2.8 7.1 0.9 7.3 3.2 2.3 76.4 2.6
Agency Services 1.0 3.2 0.7 36.0 18.2 6.0 35.0 2.6
Asset Management 11.1 1.0 2.5 30.8 0.3 1.5 52.8 2.5
Retail Brokerage 18.1 1.4 6.3 59.5 0.1 0.2 14.4 5.1
Unallocated 6.5 2.8 28.4 28.3 6.5 1.3 26.2 6.0

All 6.1 8.0 6.0 52.4 1.4 1.2 24.9 100.0

Source: BCBS (2009d).
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5.2.4 Basel IV approach

5.3 Loss distribution approach
Although the Basel Committee does not advocate any particular method

for the AMA framework, the loss distribution approach (LDA) is the recog-
nized standard model for calculating the capital charge. This model is not
specific to operational risk because it was developed in the case of the collec-
tive risk theory at the beginning of 1900s. However, operational risk presents
some characteristics that need to be considered.

5.3.1 Definition

The loss distribution approach is described in Klugman et al. (2012) and
Frachot et al. (2001). Let the operational loss L of the bank be divided into a
matrix of homogenous losses:

L =

K∑
k=1

Sk (5.1)

where Sk is the sum of losses of the kth cell and K is the number of cells in the
matrix. For instance, if we consider the Basel II classification, the mapping
matrix contains 56 cells corresponding to the 8 business lines and 7 event
types. The loss distribution approach is a method to model the random loss
Sk of a particular cell. It assumes that Sk is the random sum of homogeneous
individual losses:

Sk =

Nk(t)∑
n=1

X(k)
n (5.2)

where Nk (t) is the random number of individual losses for the period [0, t]

and X(k)
n is the nth individual loss. For example, if we consider internal fraud

in corporate finance, we can write the loss for the next year as follows:

S = X1 +X2 + . . .+XN(1)

where X1 is the first observed loss, X2 is the second observed loss, XN(1) is
the last observed loss of the year and N (1) is the number of losses for the
next year. We notice that we face two sources of uncertainty:

1. we don’t know what will be the magnitude of each loss event (severity
risk);

2. and we don’t know how many losses will occur in the next year (fre-
quency risk).
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In order to simplify the notations, we omit the index k and rewrite the random
sum as follows:

S =

N(t)∑
n=1

Xn (5.3)

The loss distribution approach is based on the following assumptions:

• The number N (t) of losses follows the loss frequency distribution P.
The probability that the number of loss events is equal to n is denoted
by p (n).

• The sequence of individual losses Xn is independent and identically dis-
tributed (i.i.d.). The corresponding probability distribution F is called
the loss severity distribution.

• The number of events is independent from the amount of loss events.

Once the probability distributions P and F are chosen, we can determine the
probability distribution of the aggregate loss S, which is denoted by G and is
called the compound distribution.

Example 41 We assume that the number of losses is distributed as follows:

n 0 1 2 3
p (n) 50% 30% 17% 3%

The loss amount can take the values $100 and $200 with probabilities 70% and
30%.

To calculate the probability distribution G of the compound loss, we first
define the probability distribution of X1, X1 +X2 and X1 +X2 +X3, because
the maximum number of losses is equal to 3. If there is only one loss, we
have Pr {X1 = 100} = 70% and Pr {X1 = 200} = 30%. In the case of two
losses, we obtain Pr {X1 +X2 = 200} = 49%, Pr {X1 +X2 = 300} = 42%
and Pr {X1 +X2 = 400} = 9%. Finally, the sum of three losses takes the
values 300, 400, 500 and 600 with probabilities 34.3%, 44.1%, 18.9% and 2.7%
respectively. We notice that these probabilities are in fact conditional to the
number of losses. Using Bayes theorem, we obtain:

Pr {S = s} =
∑
n

Pr
{∑n

i=1
Xi = s

∣∣∣N (t) = n
}
× Pr {N (t) = n}

We deduce that:

Pr {S = 0} = Pr {N (t) = 0}
= 50%
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and:

Pr {S = 100} = Pr {X1 = 100} × Pr {N (t) = 1}
= 70%× 30%

= 21%

The compound loss can takes the value 200 in two different ways:

Pr {S = 200} = Pr {X1 = 200} × Pr {N (t) = 1}+

Pr {X1 +X2 = 200} × Pr {N (t) = 2}
= 30%× 30% + 49%× 17%

= 17.33%

For the other values of S, we obtain Pr {S = 300} = 8.169%, Pr {S = 400} =
2.853%, Pr {S = 500} = 0.567% and Pr {S = 600} = 0.081%.

The previous example shows that the cumulative distribution function of
S can be written as5:

G (s) =

{ ∑∞
n=1 p (n) Fn? (s) for s > 0

p (0) for s = 0
(5.4)

where Fn? is the n-fold convolution of F with itself:

Fn? (s) = Pr
{∑n

i=1
Xi ≤ s

}
(5.5)

In Figure 5.1, we give an example of a continuous compound distribution
when the annual number of losses follows the Poisson distribution P (50) and
the individual losses follow the log-normal distribution LN (8, 5). The capital
charge, which is also called the capital-at-risk (CaR), corresponds then to the
percentile α:

CaR (α) = G−1 (α) (5.6)

The regulatory capital is obtained by setting α to 99.9% – K = CaR (99.9%).
This capital-at-risk is valid for one cell of the operational risk matrix. An-
other issue is to calculate the capital-at-risk for the bank as a whole. This
requires to define the dependence function between the different compound
losses (S1, S2, . . . , SK). In summary, here are the different steps to implement
the loss distribution approach:

• For each cell of the operational risk matrix, we estimate the loss fre-
quency distribution and the loss severity distribution.

• We then calculate the capital-at-risk.

• We define the dependence function between the different cells of the
operational risk matrix, and deduce the aggregate capital-at-risk.

5When F is a discrete probability function, it is easy to calculate Fn? (s) and then deduce
G (s). However, the determination of G (s) is more difficult in the general case of continuous
probability functions. This issue is discussed in Section 5.3.3.



272 Lecture Notes on Risk Management & Financial Regulation

FIGURE 5.1: Compound distribution when N ∼ P (50) and X ∼ LN (8, 5)

5.3.2 Parametric estimation of F and P

We first consider the estimation of the severity distribution, because we
will see that the estimation of the frequency distribution can only be done
after this first step.

5.3.2.1 Estimation of the loss severity distribution

We assume that the bank has an internal loss data. We note {x1, . . . , xT }
the sample collected for a given cell of the operational risk matrix. We consider
that the individual losses X follow a given parametric distribution F:

X ∼ F (x; θ)

where θ is the vector of parameters to estimate.

In order to be a good candidate for modeling the loss severity, the prob-
ability distribution F must satisfy the following properties: the support of F
is the interval R+, it is sufficiently flexible to accommodate a wide variety
of empirical loss data and it can fit large losses. We list here the cumulative
probability distributions that are the most used in operational risk models:
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• Gamma X ∼ G (α, β)

F (x; θ) =
γ (α, βx)

Γ (α)

where α > 0 and β > 0.

• Log-gamma X ∼ LG (α, β)

F (x; θ) =
γ (α, β lnx)

Γ (α)

where α > 0 and β > 0.

• Log-logistic X ∼ LL (α, β)

F (x; θ) =
1

1 + (x/α)
−β

=
xβ

αβ + xβ

where α > 0 and β > 0.

• Log-normal X ∼ LN
(
µ, σ2

)
F (x; θ) = Φ

(
lnx− µ

σ

)
where x > 0 and σ > 0.

• Generalized extreme value X ∼ GEV (µ, σ, ξ)

F (x; θ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

where x > µ− σ/ξ, σ > 0 and ξ > 0.

• Pareto X ∼ Pa (α, x−)

F (x; θ) = 1−
(
x

x−

)−α
where x ≥ x−, α > 1 and x− > 0.

The vector of parameters θ can be estimated by the method of maximum
likelihood (ML) or the generalized method of moments (GMM). In Chapter
14, we show that the log-likelihood function associated to the sample is:

` (θ) =

T∑
i=1

ln f (xi; θ) (5.7)

where f (x; θ) is the density function. In the case of the GMM, the empirical
moments are: {

hi,1 (µ, σ) = xi − E [X]

hi,2 (µ, σ) = (xi − E [X])
2 − var (X)

(5.8)
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TABLE 5.4: Density function, mean and variance of parametric probability distribution

Distribution f (x; θ) E [X] var (X)

G (α, β)
βαxα−1e−βx

Γ (α)

α

β

α

β2

LG (α, β)
βα (lnx)

α−1

xβ+1Γ (α)

(
β

β − 1

)α
if β > 1

(
β

β − 2

)α
−
(

β

β − 1

)2α

if β > 2

LL (α, β)
β (x/α)

β−1

α
(

1 + (x/α)
β
)2

απ

β sin (π/β)
if β > 1 α2

(
2π

β sin (2π/β)
− π2

β2 sin2 (π/β)

)
if β > 2

LN
(
µ, σ2

) 1

xσ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

exp
(
µ+ 1

2σ
2
)

exp
(
2µ+ σ2

) (
exp

(
σ2
)
− 1
)

GEV (µ, σ, ξ)

1

σ

[
1 + ξ

(
x− µ
σ

)]−(1+1/ξ)

µ+
σ

ξ
(Γ (1− ξ)− 1)

σ2

ξ2

(
Γ (1− 2ξ)− Γ2 (1− ξ)

)
exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

if ξ < 1 if ξ < 1
2

Pa (α, x−)
αxα−
xα+1

αx−
α− 1

if α > 1
αx2
−

(α− 1)
2

(α− 2)
if α > 2
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In Table 5.4, we report the density function f (x; θ), the mean E [X] and the
variance var (X) when X follows one of the probability distributions described
previously. For instance, if we consider that X ∼ LN

(
µ, σ2

)
, it follows that

the log-likelihood function is:

` (θ) = −
T∑
i=1

lnxi −
T

2
lnσ2 − T

2
ln 2π − 1

2

T∑
i=1

(
lnxi − µ

σ

)2

whereas the empirical moments are: hi,1 (θ) = xi − eµ+ 1
2σ

2

hi,2 (θ) =
(
xi − eµ+ 1

2σ
2
)2

− e2µ+σ2
(
eσ

2 − 1
)

In the case of the log-normal distribution, the vector θ is composed of two
parameters µ and σ, implying that two moments are sufficient to define the
GMM estimator. This is also the case of other probability distributions, except
the GEV distribution that requires specification of three empirical moments6.

Example 42 We assume that the individual losses take the following values
expressed in thousands of dollars: 10.1, 12.5, 14, 25, 317.3, 353, 1 200, 1 254,
52 000 and 251 000.

Using the method of maximum likelihood, we find that α̂ML and β̂ML are equal
to 15.70 and 1.22 for the log-gamma distribution and 293 721 and 0.51 for the
log-logistic distribution. In the case of the log-normal distribution7, we obtain
µ̂ML = 12.89 and σ̂ML = 3.35.

The previous analysis assumes that the sample of operational losses for
estimating θ represents a comprehensive and homogenous information of the
underlying probability distribution F. In practice, loss data are plagued by
various sources of bias. The first issue lies in the data generating processes
which underlies the way data have been collected. In almost all cases, loss
data have gone through a truncation process by which data are recorded
only when their amounts are higher than some thresholds. In practice, banks’
internal thresholds are set in order to balance two conflicting wishes: collecting
as many data as possible while reducing costs by collecting only significant
losses. These thresholds, which are defined by the global risk management
policy of the bank, must satisfy some criteria:

6We can use the moment of order 3, which corresponds to:

E
[
(X − E [X])3

]
=
σ3

ξ3

(
Γ (1− 3ξ)− 3Γ (1− 2ξ) Γ (1− ξ) + 2Γ3 (1− ξ)

)
7If we consider the generalized method of moments, the estimates are µ̂GMM = 16.26

and σ̂GMM = 1.40.



276 Lecture Notes on Risk Management & Financial Regulation

“A bank must have an appropriate de minimis gross loss threshold
for internal loss data collection, for example e10 000. The appro-
priate threshold may vary somewhat between banks, and within a
bank across business lines and/or event types. However, particular
thresholds should be broadly consistent with those used by peer
banks” (BCBS, 2006, page 153).

The second issue concerns the use of relevant external data, especially when
there is reason to believe that the bank is exposed to infrequent, yet poten-
tially severe losses. Typical examples are rogue trading or cyber attacks. If
the bank has not yet experienced a large amount of loss due to these events
in the past, this does not mean that it will never experience such problems
in the future. Therefore, internal loss data must be supplemented by external
data from public and/or pooled industry databases. Unfortunately, incorpo-
rating external data is rather dangerous and requires careful methodology to
avoid the pitfalls regarding data heterogeneity, scaling problems and lack of
comparability between too heterogeneous data. Unfortunately, there is no sat-
isfactory solution to deal with these scaling issues, implying that banks use
external data by taking into account only reporting biases and a fixed and
known threshold8.

The previous issues imply that loss data for operational risk can not be
reduced to the sample of individual losses, but also requires to specify the
threshold Hi for each individual loss xi. The form of operational loss data
is then {(xi, Hi) , i = 1, . . . , T}, where xi is the observed value of X knowing
that X is larger than the threshold Hi. Reporting thresholds affect severity
estimation in the sense that the sample severity distribution (i.e. the severity
distribution of reported losses) is different from the “true” one (i.e. the severity
distribution one would obtain if all losses were reported). Unfortunately, the
true distribution is the most relevant for calculating capital charge. As a con-
sequence, linking the sample distribution to the true one is a necessary task.
From a mathematical point of view, the true distribution is the probability
distribution of X whereas the sample distribution is the probability distri-
bution of X | X ≥ Hi. We deduce that the sample distribution for a given
threshold H is the conditional probability distribution defined as follows:

F? (x; θ | H) = Pr {X ≤ x | X ≥ H}

=
Pr {X ≤ x,X ≥ H}

Pr {X ≥ H}

=
Pr {X ≤ x} − Pr {X ≤ min (x,H)}

Pr {X ≥ H}

= 1 {x ≥ H} F (x; θ)− F (H; θ)

1− F (H; θ)
(5.9)

8See Baud et al. (2002, 2003) for more advanced techniques based on unknown and
stochastic thresholds.
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It follows that the density function is:

f? (x; θ | H) = 1 {x ≥ H} f (x; θ)

1− F (H; θ)

To estimate the vector of parameters θ, we continue to use the method of
maximum likelihood or the generalized method of moments by considering
the correction due to the truncation of data. For the ML estimator, we have
then:

` (θ) =

T∑
i=1

ln f? (xi; θ | Hi)

=

T∑
i=1

ln f (xi; θ) +

T∑
i=1

ln1 {xi ≥ Hi} −
T∑
i=1

ln (1− F (Hi; θ))

(5.10)

where Hi is the threshold associated to the ith observation. The correction
term −

∑T
i=1 ln (1− F (Hi; θ)) shows that maximizing a conventional log-

likelihood function which ignores data truncation is totally misleading. We
also notice that this term vanishes when Hi is equal to zero9. For the GMM
estimator, the empirical moments become:{

hi,1 (θ) = xi − E [X | X ≥ Hi]

hi,2 (θ) = (xi − E [X | X ≥ Hi])
2 − var (X | X ≥ Hi)

(5.11)

There is no reason that the conditional moment E [Xm | X ≥ Hi] is equal to
the unconditional moment E [Xm]. Therefore, the conventional GMM estima-
tor is biased and this is why we have to apply the threshold correction.

If we consider again the log-normal distribution, the expression of the log-
likelihood function (5.10) is10:

` (θ) = −T
2

ln 2π − T

2
lnσ2 −

T∑
i=1

lnxi −
1

2

T∑
i=1

(
lnxi − µ

σ

)2

−

T∑
i=1

ln

(
1− Φ

(
lnHi − µ

σ

))

Let us now calculate the conditional moment µ′m (X) = E [Xm | X ≥ H]. By

9Indeed, we have F (0; θ) = 0 and ln (1− F (0; θ)) = 0.
10By construction, the observed value xi is larger than the threshold Hi, meaning that

ln1 {xi ≥ Hi} is equal to 0.



278 Lecture Notes on Risk Management & Financial Regulation

using the notation Φc (x) = 1− Φ ((x− µ) /σ), we have:

µ′m (X) =
1

Φc (lnH)

∫ ∞
H

xm

xσ
√

2π
exp

(
−1

2

(
lnx− µ

σ

)2
)

dx

=
1

Φc (lnH)

∫ ∞
lnH

1

σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2

+my

)
dy

=
exp

(
mµ+m2σ2/2

)
Φc (lnH)

∫ ∞
lnH

1

σ
√

2π
exp

−1

2

(
y −

(
µ+mσ2

)
σ

)2
 dy

=
Φc
(
lnH −mσ2

)
Φc (lnH)

exp
(
mµ+m2σ2/2

)
We deduce that:

a (θ,H) = E [X | X ≥ H] =
1− Φ

(
lnH−µ−σ2

σ

)
1− Φ

(
lnH−µ

σ

) eµ+ 1
2σ

2

and:

b (θ,H) = E
[
X2 | X ≥ H

]
=

1− Φ
(

lnH−µ−2σ2

σ

)
1− Φ

(
lnH−µ

σ

) e2µ+2σ2

We finally obtain:{
hi,1 (θ) = xi − a (θ,Hi)
hi,2 (θ) = x2

i − 2xia (θ,Hi) + 2a2 (θ,Hi)− b (θ,Hi)

In order to illustrate the impact of the truncation, we report in Figure 5.2 the
cumulative distribution function and the probability density function of X |
X > H when X follows the log-normal distribution LN (8, 5). The threshold
H is set at $10 000, meaning that the bank collects operational losses when the
amount is larger than this threshold. In the bottom panels of the figure, we
indicate the mean and the variance with respect to the threshold H. We notice
that data truncation increases the magnitude of the mean and the variance.
For instance, when H is set at $10 000, the conditional mean and variance are
multiplied by a factor equal to 3.25 with respect to the unconditional mean
and variance.

Example 43 We consider Example 42 and assume that the losses have been
collected using a unique threshold that is equal to $5 000.

By using the truncation correction, the ML estimates become µ̂ML = 8.00 and
σ̂ML = 5.71. In Figure 5.3, we compare the log-normal cumulative distribution
function without and with the truncation correction. We notice that the results
are very different.
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FIGURE 5.2: Impact of the threshold H on the severity distribution

FIGURE 5.3: Comparison of the estimated severity distributions
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FIGURE 5.4: An example of QQ plot where extreme events are underesti-
mated

The previous example shows that estimating the parameters of the prob-
ability distribution is not sufficient to define the severity distribution. Indeed,
ML and GMM give two different log-normal probability distributions. The
issue is to decide which is the best parametrization. In a similar way, the
choice between the several probability families (log-normal, log-gamma, GEV,
Pareto, etc.) is an open question. This is why fitting the severity distribution
does not reduce to estimate the parameters of a given probability distribu-
tion. It must be completed by a second step that consists in selecting the
best estimated probability distribution. However, traditional goodness-of-fit
tests (Kolmogorov-Smirnov, Anderson-Darling, etc.) are not useful, because
they concern the entire probability distribution. In operational risk, extreme
events are more relevant. This explains why QQ plots or order statistics are
generally used to assess the fitting of the upper tail. A QQ plot represents the
quantiles of the empirical distribution against those of the theoretical model.
If the statistical model describes perfectly the data, we obtain the diagonal
line y = x. In Figure 5.4, we show an example of QQ plot. We notice that the
theoretical quantiles obtained from the statistical model are in line with those
calculated with the empirical data when the quantile is lower than 80%. Oth-
erwise, the theoretical quantiles are above the empirical quantiles, meaning
that extreme events are underestimated by the statistical model. We deduce
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that the body of the distribution is well estimated, but not the upper tail of
the distribution. However, medium losses are less important than high losses
in operational risk.

5.3.2.2 Estimation of the loss frequency distribution

In order to model the frequency distribution, we have to specify the count-
ing process N (t), which defines the number of losses occurring during the time
period [0, t]. The number of losses for the time period [t1, t2] is then equal to:

N (t1; t2) = N (t2)−N (t1)

We generally made the following statements about the stochastic process
N (t):

• The distribution of the number of losses N (t; t+ h) for each h > 0 is
independent of t. Moreover, N (t; t+ h) is stationary and depends only
on the time interval h.

• The random variables N (t1; t2) and N (t3; t4) are independent if the
time intervals [t1, t2] and [t3, t4] are disjoint.

• No more than one loss may occur at time t.

These simple assumptions define a Poisson process, which satisfies the follow-
ing properties:

1. There exists a scalar λ > 0 such that the distribution of N (t) has a
Poisson distribution with parameter λt.

2. The duration between two successive losses is i.i.d. and follows the ex-
ponential distribution E (λ).

Let p (n) be the probability to have n losses. We deduce that:

p (n) = Pr {N (t) = n}

=
e−λt (λt)

n

n!
(5.12)

Without loss of generality, we can fix t = 1 because it corresponds to the
required one-year time period for calculating the capital charge. In this case,
N (1) is simply a Poisson distribution with parameter λ. This probability
distribution has a useful property for time aggregation. Indeed, the sum of
two independent Poisson variables N1 and N2 with parameters λ1 and λ2 is
also a Poisson variable with parameter λ1 +λ2. This property is a direct result
of the definition of the Poisson process. In particular, we have:

K∑
k=1

N

(
k − 1

K
;
k

K

)
= N (1)
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where N ((k − 1) /K; k/K) ∼ P (λ/K). This means that we can estimate the
frequency distribution at a quarterly or monthly period and convert it to an
annual period by simply multiply the quarterly or monthly intensity parameter
by 4 or 12.

The estimation of the annual intensity λ can be done using the method
of maximum likelihood. In this case, λ̂ is the mean of the annual number of
losses:

λ̂ =
1

ny

ny∑
y=1

Ny (5.13)

where Ny is the number of losses occurring at year y and ny is the number of
observations. One of the key features of the Poisson distribution is that the
variance equals the mean:

λ = E [N (1)] = var (N (1)) (5.14)

We can use this property to estimate λ by the method of moments. If we
consider the first moment, we obtain the ML estimator, whereas we have with
the second moment:

λ̂ =
1

ny

ny∑
y=1

(
Ny − N̄

)2
where N̄ is the average number of losses.

Example 44 We assume that the annual number of losses from 2006 to 2015
is the following: 57, 62, 45, 24, 82, 36, 98, 75, 76 and 45.

The mean is equal to 60 whereas the variance is equal to 474.40. In Figure 5.5,
we show the probability function of the Poisson distribution with parameter
60. We notice that the parameter λ is not enough large to reproduce the
variance and the range of the sample. However, using the moment estimator
based on the variance is completely unrealistic.

When the variance exceeds the mean, we use the negative binomial distri-
bution NB (r, p), which is defined as follows:

p (n) =

(
r + n− 1

n

)
(1− p)r pn

=
Γ (r + n)

n! Γ (r)
(1− p)r pn

where r > 0 and p ∈ [0, 1]. The negative binomial distribution can be viewed
as the probability distribution of the number of successes in a sequence of
i.i.d. Bernoulli random variables B (p) until we get r failures. The negative
binomial distribution is then a generalization of the geometric distribution.
Concerning the two first moments, we have:

E [NB (r, p)] =
pr

1− p
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FIGURE 5.5: PMF of the Poisson distribution P (60)

and:

var (NB (r, p)) =
pr

(1− p)2

We verify that:

var (NB (r, p)) =
1

1− p
E [NB (r, p)]

> E [NB (r, p)]

Remark 45 The negative binomial distribution corresponds to a Poisson pro-
cess where the intensity parameter is random and follows a gamma distribu-
tion11:

NB (r, p) ∼ P (Λ) and Λ ∼ G (α, β)

where α = r and β = (1− p) /p.

We consider again Example 44 and assume that the number of losses is de-
scribed by the negative binomial distribution. Using the method of moments,

11See Exercise 5.4.6 in page 309.
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we obtain the following estimates:

r̂ =
m2

v −m

=
602

474.40− 60
= 8.6873

and

p̂ =
v −m
v

=
474.40− 60

474.40
= 0.8735

where m is the mean and v is the variance of the sample. Using these esti-
mates as the starting values of the numerical optimization procedure, the ML
estimates are r̂ = 7.7788 and p̂ = 0.8852. We report the corresponding proba-
bility mass function p (n) in Figure 5.6. We notice that this distribution better
describes the sample that the Poisson distribution, because it has a larger sup-
port. In fact, we show in Figure 5.6 the probability density function of λ for the
two estimated counting processes. For the Poisson distribution, λ is constant
and equal to 60, whereas λ has a gamma distribution G (7.7788, 0.1296) in the
case of the negative binomial distribution. The variance of the gamma distri-
bution explains the larger variance of the negative binomial distribution with
respect to the Poisson distribution, while we notice that the two distributions
have the same mean.

As in the case of the severity distribution, data truncation and reporting
bias have an impact of the frequency distribution (Frachot et al., 2006). For
instance, if one bank’s reporting threshold H is set at a high level, then the
average number of reported losses will be low. It does not imply that the
bank is allowed to have a lower capital charge than another bank that uses
a lower threshold and is otherwise identical to the first one. It simply means
that the average number of losses must be corrected for reporting bias as
well. It appears that the calibration of the frequency distribution comes as
a second step (after having calibrated the severity distribution) because the
aforementioned correction needs an estimate of the exceedance probability
Pr {X > H} for its calculation. This is rather straightforward: the difference
(more precisely the ratio) between the number of reported events and the
“true” number of events (which would be obtained if all losses were reported,
i.e. with a zero-threshold) corresponds exactly to the probability of one loss
being higher than the threshold. This probability is a direct by-product of the
severity distribution.

Let NH (t) be the number of events that are larger than the threshold H.
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FIGURE 5.6: PMF of the negative binomial distribution

FIGURE 5.7: PDF of the parameter λ
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By definition, NH (t) is the counting process of exceedance events:

NH (t) =

N(t)∑
i=1

1 {Xi > H}

It follows that:

E [NH (t)] = E

N(t)∑
i=1

1 {Xi > H}


= E

[
n∑
i=1

1 {Xi > H}

∣∣∣∣∣N (t) = n

]
= E [N (t)]× E [1 {Xi > H}]

because the random variables X1, . . . , Xn are i.i.d. and independent from the
random number of events N (t). We deduce that:

E [NH (t)] = E [N (t)]× Pr {Xi > H}
= E [N (t)]× (1− F (H; θ)) (5.15)

This latter equation provides information about the transformation of the
counting process N (t) into the exceedance process. However, it only concerns
the mean and not the distribution itself. One interesting feature of data trun-
cation is when the distribution of the threshold exceedance process belongs
to the same distribution class of the counting process. It is the case of the
Poisson distribution12:

PH (λ) = P (λH)

Using Equation (5.15), it follows that the Poisson parameter λH of the ex-
ceedance process is simply the product of the Poisson parameter λ by the
exceedance probability Pr {X > H}:

λH = λ× (1− F (H; θ))

We deduce that the estimator λ̂ has the following expression:

λ̂ =
λ̂H

1− F
(
H; θ̂

)
where λ̂H is the average number of losses that are collected above the threshold
H and F

(
x; θ̂
)
is the parametric estimate of the severity distribution.

12See Exercise 5.4.7 for the proof of this result.
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Example 45 We consider that the bank has collected the loss data from 2006
to 2015 with a threshold of $20 000. For a given event type, the calibrated
severity distribution corresponds to a log-normal distribution with parameters
µ̂ = 7.3 and σ̂ = 2.1, whereas the annual number of losses is the following:
23, 13, 50, 12, 25, 36, 48, 27, 18 and 35.

Using the Poisson distribution, we obtain λ̂H = 28.70. The probability that
the loss exceeds the threshold H is equal to:

Pr {X > 20 000} = 1− Φ

(
ln (20 000)− 7.3

2.1

)
= 10.75%

This means that only 10.75% of losses can be observed when we apply a thresh-
old of $20 000. We then deduce that the estimate of the Poisson parameter is
equal to:

λ̂ =
28.70

10.75%
= 266.90

On average, there are in fact about 270 loss events per year.
We could discuss whether the previous result remains valid in the case of

the negative binomial distribution. If it is the case, then we have:

PH (r, p) = P (rH , pH)

Using Equation (5.15), we deduce that:
pHrH
1− pH

=
pr

1− p
× (1− F (H; θ))

If we assume that rH is equal to r, we obtain:

pH =
p (1− F (H; θ))

1− pF (H; θ)

We verify the following inequality p ≤ pH ≤ 1. However, this solution is not
completely satisfactory as shown in Exercise 5.4.7.

5.3.3 Calculating the capital charge

Once the frequency and severity distributions are calibrated, the compu-
tation of the capital charge is straightforward. For that, we can use the Monte
Carlo method or different analytical methods. The Monte Carlo method is
much more used, because it is more flexible and give better results in the case
of low frequency/high severity events. Analytical approaches, which are very
popular in insurance, can be used for high frequency/low severity events. One
remaining challenge, however, is aggregating the capital charge of the different
cells of the mapping matrix. By construction, the loss distribution approach
assumes that aggregate losses are independent. Nevertheless, regulation are
forcing banks to take into account positive correlation between risk events.
The solution is then to consider copula functions.
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5.3.3.1 Monte Carlo approach

We remind that the one-year compound loss of a given cell is defined as
follows:

S =

N(1)∑
i=1

Xi

where Xi ∼ F and N (1) ∼ P. The capital-at-risk is then the 99% quantile
of the compound loss distribution. To estimate the capital charge by Monte
Carlo, we first simulate the annual number of losses from the frequency distri-
bution and then simulate individual losses in order to calculate the compound
loss. Finally, the quantile is estimated by order statistics. The algorithm is
described below.

Algorithm 1 Compute the capital-at-risk for an operational risk cell
Initialize the number of simulations nS
for j = 1 : nS do

Simulate an annual number n of losses from the frequency distribution P
Sj ← 0
for i = 1 : n do

Simulate a loss Xi from the severity distribution F
Sj = Sj +Xi

end for
end for
Calculate the order statistics S1:nS , . . . , SnS :nS

Deduce the capital-at-risk CaR = SαnS :nS with α = 99.9%
return CaR

Let us illustrate this algorithm when N (1) ∼ P (4) and Xi ∼ LN (8, 4).
Using a linear congruential method, the simulated values of N (1) are 3, 4, 1, 2,
3, etc. while the simulated values of Xi are 3388.6, 259.8, 13328.3, 39.7, 1220.8,
1486.4, 15197.1, 3205.3, 5070.4, 84704.1, 64.9, 1237.5, 187073.6, 4757.8, 50.3,
2805.7, etc. For the first simulation, we have three losses and we obtain:

S1 = 3388.6 + 259.8 + 13328.3 = $16 976.7

For the second simulation, the number of losses is equal to four and the com-
pound loss is equal to:

S2 = 39.7 + 1220.8 + 1486.4 + 15197.1 = $17 944.0

For the third simulation, we obtain S3 = $3 205.3, and so on. Using nS simu-
lations, the value of the capital charge is estimated with the 99.9% empirical
quantile based on order statistics. For instance, Figure 5.8 shows the his-
togram of 2 000 simulated values of the capital-at-risk estimated with one
million simulation. The right value is equal to $3.24 mn. However, we notice
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that the variance of the estimator is large. Indeed, the range of the MC esti-
mator is between $3.10 mn and 3.40 mn in our experiments with one million
simulation.

FIGURE 5.8: Histogram of the MC estimator ĈaR

The estimation of the capital-at-risk with a high accuracy is therefore dif-
ficult. The convergence of the Monte Carlo algorithm is low and the estimated
quantile can be very far from the true quantile especially when the severity
loss distribution is heavy tailed and the confidence level α. That’s why it is
important to control the accuracy of G−1 (α). This can be done by verifying
that the estimated moments are close to the theoretical ones. For the first two
central moments, we have13:

E [S] = E [N (1)]E [Xi]

and:
var (S) = E [N (1)] var (Xi) + var (N (1))E2 [Xi]

To illustrate the convergence problem, we consider the example of the com-
pound Poisson distribution where N (1) ∼ P (10) and Xi ∼ LN

(
5, σ2

)
. We

compute the aggregate loss distribution by the Monte Carlo method for dif-
ferent number nS of simulations and different runs. To measure the accuracy,

13See Exercise 5.4.8 for the derivation of these results and the extension to other moments.
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we calculate the ratio between the MC standard deviation σ̂nS (S) and the
true value σ (S):

R (ns) =
σ̂nS (S)

σ (S)

We notice that the convergence is much more erratic when σ takes a high value
(Figure 5.10) than when σ is low (Figure 5.9). When σ takes the value 1, the
convergence of the Monte Carlo method is verified with 100 000 simulations.
When σ takes the value 2.5, 100 millions of simulations are not sufficient to
estimate the second moment, and then the capital-at-risk. Indeed, the occur-
rence of probability extreme events is generally underestimated. Sometimes, a
severe loss is simulated implying a jump in the empirical standard deviation
(see Figure 5.10). This is why we need a large number of simulations in order
to be confident when estimating the 99.9% capital-at-risk with high severity
distributions.

FIGURE 5.9: Convergence of the accuracy ratio R (ns) when σ = 1

Remark 46 With the Monte Carlo approach, we can easily integrate miti-
gation factors such as insurance coverage. An insurance contract is generally
defined by a deductive14 A and the maximum amount B of a loss, which is
covered by the insurer. The effective loss X̃i suffered by the bank is then the

14It corresponds to the loss amount the bank has to cover by itself.
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FIGURE 5.10: Convergence of the accuracy ratio R (ns) when σ = 2.5

difference between the loss of the event and the amount paid by the insurer:

X̃i = Xi −max (min (Xi,B)−A, 0)

The relationship between Xi and X̃i is shown in Figure 5.11. In this case, the
annual loss of the bank becomes:

S =

N(1)∑
i=1

X̃i

Taking into account an insurance contract is therefore equivalent to replace
Xi by X̃i in the Monte Carlo simulations.

5.3.3.2 Analytical approaches

There are three analytical (or semi-analytical) methods to compute the ag-
gregate loss distribution: the solution based on characteristic functions, Panjer
recursion and the single loss approximation.

Method of characteristic functions Formally, the characteristic function
of the random variable X is defined by:

ϕX (t) = E
[
eitX

]
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X̃i

Xi
B

A

A

A+ x−B

x

FIGURE 5.11: Impact of an insurance contract in an operational risk loss

If X has a continuous probability distribution F, we obtain:

ϕX (t) =

∫ ∞
0

eitx dF (x)

We notice that the characteristic function of the sum of n independent random
variables is the product of their characteristic functions:

ϕX1+...+Xn (t) = E
[
eit(X1+X2+···+Xn)

]
=

n∏
i=1

E
[
eitXi

]
=

n∏
i=1

ϕXi (t)

It comes that the characteristic function of the compound distribution G is
given by:

ϕS (t) =

∞∑
n=0

p (n) (ϕX (t))
n

= ϕN(1) (ϕX (t))

where ϕN(1) (t) is the probability generating function of N (1). For example,
if N (1) ∼ P (λ), we have:

ϕN(1) (t) = eλ(t−1)

and:
ϕS (t) = eλ(ϕX(t)−1)
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We finally deduce that S has the probability density function given by the
Laplace transform of ϕS (t):

g (x) =
1

2π

∫ ∞
−∞

e−itxϕS (t) dt

Using this expression, we can easily compute the cumulative distribution func-
tion and its inverse with the fast fourier transform15.

Panjer recursive approach Panjer [1981] introduces recursive ap-
proaches to compute high-order convolutions. He showed that if the prob-
ability mass function of the counting process N (t) satisfies:

p (n) =

(
a+

b

n

)
p (n− 1)

where a and b are two scalars, then the following recursion holds:

g (x) = p (1) f (x) +

∫ x

0

(
a+ b

y

x

)
f (y) g (x− y) dy

where x > 0. For discrete severity distributions satisfying fn = Pr {Xi = nδ}
where δ is the monetary unit (e.g. $10 000), the Panjer recursion becomes:

gn = Pr {S = nδ}

=
1

1− af0

n∑
j=1

(
a+

bj

n

)
fjgn−j

with:

g0 =

∞∑
n=0

p (n) (f0)
n

=

{
p (0) ebf0 if a = 0

p (0) (1− af0)
−1−b/a otherwise

The capital-at-risk is then equal to:

CaR (α) = n?δ

where:

n? = inf

n :

n∑
j=0

gj ≥ α


Like the method of characteristic functions, the Panjer recursion is very pop-
ular among academics, but produces significant numerical errors in practice

15See Exercise 5.4.9 for the derivation of the algorithm and a numerical application.
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when applied to operational risk losses. The issue is the support of the com-
pound distribution, whose range can be from zero to several billions16.

Exercise 46 We consider the compound Poisson distribution with log-normal
losses and different sets of parameters:

(a) λ = 5, µ = 5, σ = 1.0

(b) λ = 5, µ = 5, σ = 1.5

(c) λ = 5, µ = 5, σ = 2.0

(d) λ = 50, µ = 5, σ = 2.0

In order to implement the Panjer recursion, we have to perform a discretization
of the severity distribution. Using the central difference approximations, we
have:

fn = Pr

{
nδ − δ

2
≤ Xi ≤ nδ +

δ

2

}
= F

(
nδ +

δ

2

)
− F

(
nδ − δ

2

)
To initialize the algorithm, we use the convention f0 = F (δ/2). In Figure
5.12, we compare the cumulative distribution function of the aggregate loss
obtained with the Panjer recursion and Monte Carlo simulations17. We deduce
the capital-at-risk for different values of α in Table 5.5. In our case, the Panjer
algorithm gives a good approximation, because the support of the distribution
is ‘bounded ’. When the aggregate loss can take very large values, we need a lot
of iterations to achieve the convergence18. Moreover, we may have underflow
in computations because g0 ≈ 0.

TABLE 5.5: Comparison of the capital-at-risk calculated with Panjer recur-
sion and Monte Carlo simulations

α
Panjer recursion Monte Carlo simulations

(a) (b) (c) (d) (a) (b) (c) (d)
90% 2400 4500 11000 91000 2350 4908 11648 93677
95% 2900 6500 19000 120000 2896 6913 19063 123569
99% 4300 13500 52000 231000 4274 13711 51908 233567
99.5% 4900 18000 77000 308000 4958 17844 77754 310172
99.9% 6800 32500 182000 604000 6773 32574 185950 604756

16See Exercise 5.4.10 in page 310 for a detailed study of the Panjer recursion and numerical
calculations of approximation error.

17We use one million of simulations.
18In this case, it is not obvious that the Panjer recursion is faster than Monte Carlo

simulations.
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FIGURE 5.12: Comparison between the Panjer and MC compound distri-
butions

Single loss approximation If the severity belongs to the family of sub-
exponential distributions, then Böcker and Klüppelberg (2005) and Böcker
and Sprittulla (2006) show that the percentile of the compound distribution
can be approximated by the following expression:

G−1 (α) ≈ (E [N (1)]− 1)E [Xi] + F−1

(
1− 1− α

E [N (1)]

)
(5.16)

It follows that the capital-at-risk is the sum of the expected loss and the
unexpected loss defined as follows:

EL = E [N (1)]E [Xi]

UL (α) = F−1

(
1− 1− α

N (1)

)
− E [Xi]

To understand Formula (5.16), we recall subexponential distributions are a
special case of heavy-tailed distributions, which satisfy the following property:

lim
x→∞

Pr {X1 + · · ·+Xn > x}
Pr {max (X1, . . . , Xn) > x}

= 1

This means that large values of the aggregate loss are dominated by the max-
imum loss of one event. If we decompose the capital-at-risk as a sum of risk
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contributions, we obtain:

G−1 (α) =

E[N(1)]∑
i=1

RCi

where:
RCi = E [Xi] for i 6= i?

and:
RCi? = F−1

(
1− 1− α

N (1)

)
In this model, the capital-at-risk is mainly explained by the single largest loss
i?. If we neglect the small losses, the capital-at-risk at the confidence level
αCaR is equivalent to the quantile αSeverity of the loss severity where:

αSeverity = 1− 1− αCaR

N (1)

This relationship19 is shown in Figure and explains why this framework is
called the single loss approximation (SLA). For instance, if the annual number
of losses is equal to 100 on average, computing the capital-at-risk with a 99.9%
confidence level is equivalent to estimate the quantile 99.999% of the loss
severity.

The most popular subexponential distributions used in operational risk
modeling are the Log-gamma, Log-logistic, Log-normal and Pareto prob-
ability distributions (BCBS, 2014f). For instance, if N (1) ∼ P (λ) and
Xi ∼ LN

(
µ, σ2

)
, we obtain:

EL = λ exp

(
µ+

1

2
σ2

)
and:

UL (α) = exp

(
µ+ σΦ−1

(
1− 1− α

λ

))
− exp

(
µ+

1

2
σ2

)
In Figure 5.14, we report the results of some experiments for different values
of paramors. In the top panels, we assume that λ = 100, µ = 5.0 and σ = 2.0
(left panel), and λ = 500, µ = 10.0 and σ = 2.5 (right panel). These two
examples correspond to medium severity/low frequency and high severity/low
frequency events. In these cases, we obtain a good approximation. In the
bottom panel, the parameters are λ = 1000, µ = 8.0 and σ = 1.0. The
approximation does not work very well, because we have a low severity/high
frequency events and the risk can then not be explained by an extreme single
loss. The underestimation of the capital-at-risk is due to the underestimation
of the number of losses. In fact, with loss severity/high frequency events, the

19In Chapter 16, we will see that such transformation is common in extreme value theory.
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FIGURE 5.13: Relationship between αCaR and αSeverity

FIGURE 5.14: Numerical illustration of the single loss approximation
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risk is not to face a large single loss, but to have a high number of losses in
the year. This is why it is better to approximate the capital-at-risk with the
following formula:

G−1 (α) ≈
(
P−1 (α)− 1

)
E [Xi] + F−1

(
1− 1− α

E [N (1)]

)
where P is the cumulative distribution function of the counting process N (1).
In Figure 5.14, we have also reported this approximation SLA∗ for the third
example. We verify that it gives better results than the classic approximation
for high frequency events.

5.3.3.3 Aggregation issues

We remind that the loss at the bank level is equal to:

L =

K∑
k=1

Sk

where Sk is the aggregate loss of the kth cell of the mapping matrix. For
instance, if the matrix is composed of the eight business lines (BL) and seven
even types (ET) of the Basel II classification, we have L =

∑
k∈K Sk whereK =

{(BLk1 ,ETk2) , k1 = 1, . . . , 8; k2 = 1, . . . , 7}. Let CaRk1,k2 (α) be the capital
charge calculated for the business line k1 and the event type k2. We have:

CaRk1,k2
(α) = G−1

k1,k2
(α)

One solution to calculate the capital charge at the bank level is to sum up all
the capital charges:

CaR (α) =

8∑
k1=1

7∑
k2=1

CaRk1,k2
(α)

=

8∑
k1=1

7∑
k2=1

G−1
k1,k2

(α)

From a theoretical point of view, this is equivalent to assume that all the ag-
gregate losses Sk are perfectly correlated. This approach is highly conservative
and ignores diversification effects between business lines and event types.

Let us consider the two-dimensional case:

L = S1 + S2

=

N1∑
i=1

Xi +

N2∑
j=1

Yj

In order to take into account the dependence between the two aggregate losses
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S1 and S2, we can assume that frequencies N1 and N2 are correlated or sever-
ities Xi and Yj are correlated. Thus, the aggregate loss correlation ρ (S1, S2)
depends on two key parameters:

• the frequency correlation ρ (N1, N2), and

• the severity correlation ρ (Xi, Yj).

For example, we should observe that, historically, the number of external fraud
events is high (respectively low) when the number of internal fraud events is
also high (respectively low). Severity correlation is more difficult to justify. In
effect, a basic feature of the LDA model requires to assume that individual
losses are jointly independent. Therefore it is conceptually difficult to assume
simultaneously severity independence within each class of risk and severity
correlation between two classes. By assuming that ρ (Xi, Yj) = 0, Frachot et
al. ( 2004) find an upper bound of the aggregate loss correlation. We have:

cov (S1, S2) = E [S1S2]− E [S1]E [S2]

= E
[∑N1

i=1
Xi

∑N2

j=1
Yj

]
− E

[∑N1

i=1
Xi

]
E
[∑N2

j=1
Yj

]
= E [N1N2]E [Xi]E [Yj ]− E [N1]E [Xi]E [N2]E [Yj ]

= (E [N1N2]− E [N1]E [N2])E [Xi]E [Yj ]

and:
ρ (S1, S2) =

(E [N1N2]− E [N1]E [N2])E [Xi]E [Yj ]√
var (S1) var (S2)

If we assume that the counting processes N1 and N2 are Poisson processes
with parameters λ1 and λ2, we obtain:

ρ (S1, S2) = ρ (N1, N2) η (Xi) η (Yj)

where:

η (X) =
E [X]√
E [X2]

=
1√

1 + CV2 (X)
≤ 1

Here CV (X) = σ (X) /E [X] denotes the coefficient of variation of the ran-
dom variable X. As a result, aggregate loss correlation is always lower than
frequency correlation:

0 ≤ ρ (S1, S2) ≤ ρ (N1, N2) ≤ 1

We deduce that an upper bound of the aggregate loss correlation is equal to:

ρ+ = η (Xi) η (Yj)
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For high severity events, severity independence likely dominates frequency
correlation and we obtain ρ+ ' 0 because η (Xi) ' 0.

Let us consider the example of log-normal severity distributions. We have:

ρ+ = exp

(
−1

2
σ2
X −

1

2
σ2
Y

)
We notice that this function is decreasing with respect to σX and σY . Figure
5.15 shows the relationship between σX , σY and ρ+. We verify that ρ+ is
small when σX and σY take large values. For instance, if σX = σY = 2, the
aggregate loss correlation is lower than 2%.

FIGURE 5.15: Upper bound ρ+ of the aggregate loss correlation

There are two ways to take into account correlations for computing the
capital charge of the bank. The first approach is to consider the normal ap-
proximation:

CaR (α) =
∑
k

ELk +

√∑
k,k′

ρk,k′ × (CaRk (α)− ELk)× (CaRk′ (α)− ELk′)

where ρk,k′ is the correlation between the cells k and k′ of the mapping matrix.
The second approach consists in introducing the dependence between the ag-
gregate losses using a copula function C. The joint distribution of (S1, . . . , SK)



Operational Risk 301

has the following form:

Pr {S1 ≤ s1, . . . , SK ≤ sK} = C (G1 (s1) , . . . ,GK (sK))

where Gk is the cumulative probability distribution of the kth aggregate loss
Sk. In this case, the quantile of the random variable L =

∑K
k=1 Sk is estimated

using Monte Carlo simulations. The difficulty comes from the fact that the
distributions Gk have no analytical expression. The solution is then to use
the method of empirical distributions, which is presented in page 445.

5.3.4 Incorporating scenario analysis

The concept of scenario analysis should deserve further clarification.
Roughly speaking, when we refer to scenario analysis, we want to express
the idea that banks’ experts and experienced managers have some reliable
intuitions on the riskiness of their business and that these intuitions are not
entirely reflected in the bank’s historical internal data. As a first requirement,
we expect that experts should have the opportunity to give their approval to
capital charge results. In a second step, one can imagine that experts’ intu-
itions are directly plugged into severity and frequency estimations. Experts’
intuition can be captured through scenario building. More precisely, a sce-
nario is given by a potential loss amount and the corresponding probability
of occurrence. As an example, an expert may assert that a loss of one mil-
lion dollars or higher is expected to occur once every (say) 5 years. This is
a valuable information in many cases, either when loss data are rare and do
not allow for statistically sound results or when historical loss data are not
sufficiently forward-looking. In this last case, scenario analysis allows to in-
corporate external loss data.

In what follows, we show how scenarios can be translated into restric-
tions on the parameters of frequency and severity distributions. Once these
restrictions have been identified, a calibration strategy can be designed where
parameters are calibrated by maximizing some standard criterion subject to
these constraints. As a result, parameter estimators can be seen as a mixture
of the internal data-based estimator and the scenario-based implied estimator.

5.3.4.1 Probability distribution of a given scenario

We assume that the number of losses N (t) is a Poisson process with in-
tensity λ. Let τn be the arrival time of the nth loss, i.e.

τn = inf {t ≥ 0 : N (t) = n}

We know that the durations Tn = τn − τn−1 between two consecutive losses
are independent identically distributed exponential random variables with pa-
rameter λ. We remind that the losses Xn are i.i.d. with distribution F. We
note now Tn (x) the duration between two losses exceeding x. It is obvious
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that the durations are i.i.d. It suffice now to characterize T1 (x). By using the
fact that a finite sum of exponential times is an Erlang distribution, we have:

Pr {T1 (x) > t} =
∑
n≥1

Pr {τn > t;X1 < x, . . . ,Xn−1 < x;Xn ≥ x}

=
∑
n≥1

Pr {τn > t}F (x)
n−1

(1− F (x))

=
∑
n≥1

F (x)
n−1

(1− F (x))

n−1∑
k=0

e−λt
(λt)

k

k!

= (1− F (x))

∞∑
k=0

e−λt
(λt)

k

k!

∞∑
n=k

F (x)
n

= e−λt
∞∑
k=0

(λt)
k

k!
F (x)

k

= e−λ(1−F(x))t

We deduce that Tn (x) follows an exponential distribution with parameter
λ (x) = λ (1− F (x)). The average duration between two losses exceeding x is
also the mean of Tn (x):

E [Tn (x)] =
1

λ (1− F (x))

Example 47 We assume that the annual number of losses follows a Poisson
parameter with λ = 5 and the severity of losses are log-normal LN (9, 4).

In Figure 5.16, we simulate the corresponding Poisson process N (t) and also
the events whose loss is larger than $20 000 and $50 000. We then show the
exponential distribution20 of Tn (x).

5.3.4.2 Calibration of a set of scenarios

Let us consider a scenario defined as “a loss of x or higher occurs once
every d years”. By assuming a compound Poisson distribution with a para-
metric severity distribution F (x; θ), λ is the average number of losses per
year, λ (x) = λ (1− F (x; θ)) is the average number of losses higher than x
and 1/λ (x) is the average duration between two losses exceeding x. As a
result, for a given scenario (x, d), parameters (λ, θ) are restricted to satisfy:

d =
1

λ (1− F (x; θ))

20For the parameter λ (x), we have:

λ
(
2× 104

)
= 5×

(
1− Φ

(
ln
(
2× 104

)
− 9

2

))
= 1.629

and λ
(
5× 104

)
= 0.907.
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FIGURE 5.16: Simulation of the Poisson process N (t) and peak-over-
threshold events

Suppose that we face different scenarios {(xs, ds) , s = 1, . . . , nS}. We may
estimate the implied parameters underlying the expert judgements using the
quadratic criterion:(

λ̂, θ̂
)

= arg min

nS∑
s=1

ws

(
ds −

1

λ (1− F (xs; θ))

)2

where ws is the weight of the sth scenario. The previous approach belongs to
the method of moments. As a result, we can show that the optimal weights
ws correspond to the inverse of the variance of ds:

ws =
1

var (ds)

= λ (1− F (xs; θ))

To solve the previous optimization program, we proceed by iterations. Let(
λ̂m, θ̂m

)
be the solution of this minimization program:

(
λ̂m, θ̂m

)
= arg min

p∑
j=1

λ̂m−1

(
1− F

(
xs; θ̂m−1

))(
ds −

1

λ (1− F (xs; θ))

)2



304 Lecture Notes on Risk Management & Financial Regulation

Under some conditions, the estimator
(
λ̂m, θ̂m

)
converge to the optimal solu-

tion. We also notice that we can simplify the optimization program by using
the following approximation:

ws =
1

var (ds)
=

1

E [ds]
' 1

ds

Example 48 We assume that the severity distribution is log-normal and con-
sider the following set of expert’s scenarios:

xs (in $ mn) 1 2.5 5 7.5 10 20
ds (in years) 1/4 1 3 6 10 40

If ws = 1, we obtain λ̂ = 43.400, µ̂ = 11.389 and σ̂ = 1.668 (#1). Using the
approximation ws ' 1/ds, the estimates become λ̂ = 154.988, µ̂ = 10.141 and
σ̂ = 1.855 (#2). Finally, the optimal estimates are λ̂ = 148.756, µ̂ = 10.181
and σ̂ = 1.849 (#3). In the table below, we report the estimated values of the
duration. We notice that they are close to the expert’s scenarios.

xs (in $ mn) 1 2.5 5 7.5 10 20

#1 0.316 1.022 2.964 5.941 10.054 39.997
#2 0.271 0.968 2.939 5.973 10.149 39.943
#3 0.272 0.970 2.941 5.974 10.149 39.944

Remark 47 We can combine internal loss data, expert’s scenarios and ex-
ternal loss data21 by maximizing the penalized likelihood:

θ̂ = arg max $internal` (θ)−

$expert

nS∑
s=1

ws

(
ds −

1

λ (1− F (xs; θ))

)2

−

$external

n?S∑
s=1

w?s

(
d?s −

1

λ (1− F (x?s; θ))

)2

where $internal, $expert and $external are the weights reflecting the confidence
placed on internal loss data, expert’s scenarios and external loss.

5.3.5 Stability issue of the LDA model

One of the big issue of AMA (and LDA) models is their stability. It is
obvious that the occurrence of a large loss changes dramatically the estimated
capital-at-risk as explained by Ames et al. (2015):

“Operational risk is fundamentally different from all other risks

21In this case, each external loss is treated as an expert’s scenario.
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taken on by a bank. It is embedded in every activity and prod-
uct of an institution, and in contrast to the conventional financial
risks (e.g. market, credit) is harder to measure and model, and
not straight forwardly eliminated through simple adjustments like
selling off a position. While it varies considerably, operational risk
tends to represent about 10-30% of the total risk pie, and has
grown rapidly since the 2008-09 crisis. It tends to be more fat-
tailed than other risks, and the data are poorer. As a result, mod-
els are fragile – small changes in the data have dramatic impacts
on modeled output – and thus required operational risk capital is
unstable”.

In this context, the Basel Committee has decided to review the different mea-
surement approaches to calculate the operational risk capital. In Basel IV,
advanced measurement approaches have been dropped. This decision marks
a serious setback for operational risk modeling. The LDA model continue to
be used by Basel II jurisdictions, and will continue to be used by large in-
ternational banks, because it is the only way to assess an ‘economic’ capital
using internal loss data. However, solutions for stabilizing the LDA model can
only be partial and even hazardous or counter-intuitive, because it ignores the
nature of operational risk.

5.4 Exercises

5.4.1 Estimation of the loss severity distribution

We consider a sample of n individual losses {x1, . . . , xn}. We assume that
they can be described by different probability distributions:

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(
x

x−

)−α
with x ≥ x− and α > 1.

(iii) X follows a Gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.
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(iv) The natural logarithm of the loss X follows a Gamma distribution:
lnX ∼ Γ (α;β).

1. We consider the case (i).

(a) Show that the probability density function is:

f (x) =
1

xσ
√

2π
exp

(
−1

2

(
lnx− µ

σ

)2
)

(b) Calculate the two first moments of X. Deduce the orthogonal con-
ditions of the generalized method of moments.

(c) Find the maximum likelihood estimators µ̂ and σ̂.

2. We consider the case (ii).

(a) Calculate the two first moments of X. Deduce the GMM conditions
for estimating the parameter α.

(b) Find the maximum likelihood estimator α̂.

3. We consider the case (iii). Write the log-likelihood function associated
to the sample of individual losses {x1, . . . , xn}. Deduce the first-order
conditions of the maximum likelihood estimators α̂ and β̂.

4. We consider the case (iv). Show that the probability density function of
X is:

f (x) =
βα (lnx)

α−1

Γ (α)xβ+1

What is the support of this probability density function? Write the
log-likelihood function associated to the sample of individual losses
{x1, . . . , xn}.

5. We now assume that the losses {x1, . . . , xn} have been collected beyond
a threshold H meaning that X ≥ H.

(a) What becomes the generalized method of moments in the case (i).
(b) Calculate the maximum likelihood estimator α̂ in the case (ii).
(c) Write the log-likelihood function in the case (iii).

5.4.2 Estimation of the loss frequency distribution

We consider a dataset of individual losses {x1, . . . , xn} corresponding to a
sample of T annual loss numbers {NY1 , . . . , NYT }. This implies that:

T∑
t=1

NYt = n
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If we measure the number of losses per quarter {NQ1
, . . . , NQ4T

}, we use the
notation:

4T∑
t=1

NQt = n

1. We assume that the annual number of losses follows a Poisson distribu-
tion P (λY ). Calculate the maximum likelihood estimator λ̂Y associated
to the sample {NY1

, . . . , NYT }.

2. We assume that the quarterly number of losses follows a Poisson distri-
bution P (λQ). Calculate the maximum likelihood estimator λ̂Q associ-
ated to the sample {NQ1

, . . . , NQ4T
}.

3. What is the impact of considering a quarterly or annual basis on the
computation of the capital charge?

4. What does this result become if we consider a method of moments based
on the first moment?

5. Same question if we consider a method of moments based on the second
moment.

5.4.3 Using the method of moments in operational risk mod-
els

1. Let N (t) be the number of losses for the time interval [0, t]. We note
{N1, . . . , NT } a sample of N (t) and we assume that N (t) follows a
Poisson distribution P (λ). We recall that:

ex =

∞∑
n=0

xn

n!

(a) Calculate the first moment E [N (t)].
(b) Show the following result:

E

[
m∏
i=0

(N (t)− i)

]
= λm+1

Then deduce the variance of N (t).
(c) Propose two estimators based on the method of moments.

2. Let S be the random sum:

S =

N(t)∑
i=0

Xi

with Xi ∼ LN
(
µ, σ2

)
, Xi ⊥ Xj and N (t) ∼ P (λ).
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(a) Calculate the mathematical expectation E [S].
(b) We recall that: (

n∑
i=1

xi

)2

=

n∑
i=1

x2
i +

∑
i6=j

xixj

Show that:
var (S) = λ exp

(
2µ+ 2σ2

)
(c) How can we estimate µ and σ if we have already calibrated λ?

3. We assume that the annual number of losses follows a Poisson distribu-
tion P (λ). We also assume as well that the individual losses are inde-
pendent and follow the Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(
x

x−

)−α
with x ≥ x− and α > 1.

(a) Show that the duration between two consecutive losses that are
larger than ` is an exponential distribution with parameter λxα−`−α.

(b) How can we use this result to calibrate experts’ scenarios?

5.4.4 Calculation of the Basel II required capital

We consider the simplified balance sheet of a bank, which is described
below.

1. In the Excel file, we provide the price evolution of stocks A and B. The
trading portfolio consists of of 10 000 shares A and 25 000 shares B.
Calculate the daily historical VaR of this portfolio by assuming that the
current stock prices are equal to $105.5 and $353. Deduce the capital
charge for market risk assuming that the VaR has not fundamentally
changed during the last 3 months22.

2. We consider that the credit portfolio of the bank can be summarized by
4 meta-credits whose characteristics are the following:

Sales EAD PD LGD M
Bank $80 mn 1% 75% 1.0
Corporate $500 mn $200 mn 5% 60% 2.0
SME $30 mn $50 mn 2% 40% 4.5
Mortgage $50 mn 9% 45%
Retail $100 mn 4% 85%

Calculate the IRB capital charge for the credit risk.

22The multiplication coefficient ξ is set equal to 0.5.
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3. We assume that the bank is exposed to a single operational risk. The
severity distribution is a log-normal probability distribution LN (8, 4),
whereas the frequency distribution is the following discrete probability
distribution:

Pr {N = 5} = 60%

Pr {N = 10} = 40%

Calculate the AMA capital charge for the operational risk.

4. Deduce the capital charge of the bank and the capital ratio knowing
that the capital of the bank is equal to $70 mn.

5.4.5 Parametric estimation of the loss severity distribution

1. We assume that the severity losses are log-logistic distributed Xi ∼
LL (α, β) with:

F (x;α, β) =
(x/α)

β

1 + (x/α)
β

(a) Find the density function.
(b) Deduce the log-likelihood function of the sample {x1, . . . , xn}.
(c) Show that the ML estimators satisfy the following first-order con-

ditions: 
∑n
i=1 F

(
xi; α̂, β̂

)
= n/2∑n

i=1

(
2F
(
xi; α̂, β̂

)
− 1
)

lnxi = n/β̂

(d) The sample of loss data is 2 918, 740, 3 985, 2 827, 2 839, 6 897, 7 665,
3 766, 3 107 and 3 304. Verify that α̂ = 3 430.050 and β̂ = 3.315 are
the ML estimates.

(e) What becomes the log-likelihood function of the sample {x1, . . . , xn}
if we assume that the losses were collected beyond a threshold H?

5.4.6 Mixed Poisson process

1. We consider the mixed poisson process where N (t) ∼ P (Λ) and Λ is a
random variable. Show that:

var (N (t)) = E [N (t)] + var (Λ)

2. Deduce that var (N (t)) ≥ E [N (t)]. Determine the probability distribu-
tion Λ such that the equality holds. Let ϕ (n) be the following ratio:

ϕ (n) =
(n+ 1) p (n+ 1)

p (n)

Show that ϕ (n) is constant.
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3. We assume that Λ ∼ G (α, β).

(a) Calculate E [N (t)] and var (N (t)).

(b) Show that N (t) has a negative binomial distribution NB (r, p).
Calculate the parameters r and p with respect to α and β.

(c) Show that ϕ (n) is an affine function.

4. We assume that Λ ∼ E (λ).

(a) Calculate E [N (t)] and var (N (t)).

(b) Show that N (t) has a geometric distribution G (p). Determine the
parameter p.

5.4.7 Loss frequency distribution with data truncation

5.4.8 Moments of compound distribution

5.4.9 Characteristic functions and fast Fourier transform

5.4.10 Derivation and implementation of the Panjer recur-
sion

5.4.11 The Böcker-Klüppelberg-Sprittulla approximation for-
mula

5.4.12 Frequency correlation, severity correlation and loss
aggregation

5.4.13 Loss aggregation using copula functions

5.4.14 Scenario analysis and stress testing
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Part II

Risk Management in Other
Financial Sectors





Chapter 12
Systemic Risk and Shadow Banking
System

The financial crisis of 2008 is above all a crisis of the financial system as
a whole. This is why it is called the Global Financial Crisis (GFC) and is
different than the previous crises (the Great Depression in the 1930s, the Japan
crisis in the early 1990s, the Black Monday of 1987, the 1997 Asian financial
crisis, etc.). It is a superposition of the 2007 subprime crisis, affecting primarily
the mortgage and credit derivative markets, and a liquidity funding crisis
following the demise of Lehman Brothers, which affected the credit market
and more broadly the shadow banking system. This crisis was not limited to
the banking system, but has affected the different actors of the financial sector,
in particular insurance companies, asset managers and of course investors. As
we have seen in the previous chapters, this led to a strengthening of financial
regulation, and not only on the banking sector. The purpose of new regulations
in banks, insurance, asset management, pension funds and organization of the
financial market is primarily to improve the rules of each sector, but also
to reduce the overall systemic risk of the financial sector. In this context,
systemic risk is now certainly the biggest concern of financial regulators and
the Financial Stability Board (FSB) was created in April 2009 especially to
monitor the stability of the global financial system and to manage the systemic
risk1. It rapidly became clear that the identification of the systemic risk is a
hard task and can only be conducted in a gradual manner. This is why some

1The FSB is the successor to the Financial Stability Forum (FSF), which was founded
in 1999 by the G7 Finance Ministers and Central Bank Governors. With an expanded
membership to the G20 countries, the mandate of the FSB has been reinforced with the
creation of three Standing Committees:

• the Standing Committee on Assessment of Vulnerabilities (SCAV), which is the FSB’s
main mechanism for identifying and assessing risks;

• the Standing Committee on Supervisory and Regulatory Cooperation (SRC), which
is charged with undertaking further supervisory analysis or framing a regulatory or
supervisory policy response to a material vulnerability identified by SCAV;

• the Standing Committee on Standards Implementation (SCSI), which is responsible
for monitoring the implementation of agreed FSB policy initiatives and international
standards.

As the Basel Committee on Banking Supervision, the secretariat to the Financial Stability
Board is hosted by the Bank for International Settlements and located in Basel.

315
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policy responses are not yet finalized, in particular with the emergence of a
shadow banking system, whose borders are not well defined.

12.1 Defining systemic risk
The Financial Stability Board defines systemic events in broad terms:

“Systemic event is the disruption to the flow of financial services
that is (i) caused by an impairment of all or parts of the financial
system and (ii) has the potential to have serious negative conse-
quences on the real economy” (FSB, 2009, page 6).

This definition focuses on three important points. Firstly, systemic events are
associated with negative externalities and moral hazard risk, meaning that
every financial institution’s incentive is to manage its own risk/return trade-off
but not necessarily the implications of its risk on the global financial system.
Secondly, a systemic event can cause the impairment of the financial system.
Lastly, it implies significant spillovers to the real economy and negative effects
on economic welfare.

It is clear that the previous definition may appear too large, but also too
restrictive. It may be too large, because it is not precise and many events can
be classified as systemic events. It is also too restrictive, because it is difficult
to identify the event that lies at the origin of the systemic risk. Most of the
times, it is caused by the combination of several events. As noted by Zigrand
(2014), systemic risk often refers to exogenous shocks, whereas it can also be
generated by endogenous shocks:

“Systemic risk comprises the risk to the proper functioning of the
system as well as the risk created by the system” (Zigrand, 2014,
page 3).

In fact, there are numerous definitions of systemic risk because it is a multi-
faceted concept.

12.1.1 Systemic risk, systematic risk and idiosyncratic risk

In financial theory, systemic and idiosyncratic risks are generally opposed.
Systemic risk refers to the system whereas idiosyncratic risk refers to an entity
of the system. For instance, the banking system may collapse, because many
banks may be affected by a severe common risk factor and may default at
the same time. In economics, we generally make the assumption that idiosyn-
cratic and common risk factors are independent. However, there exists some
situations where idiosyncratic risk may affect the system itself. It is the case
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of large institutions, for example the default of big banks. In this situation,
systemic risk refers to the propagation of a single bank distressed risk to the
other banks.

Let us consider one of the most famous model in finance, which is the
capital asset pricing model (CAPM) developed by William Sharpe in 1964.
Under some assumptions, he showed that the expected return of asset i is
related to the expected return of the market portfolio in the following way:

E [Ri]− r = βi
(
E
[
Rmkt

]
− r
)

(12.1)

where Ri and Rmkt are the asset and market returns, r is the risk-free rate
and the coefficient βi is the beta of the asset i with respect to the market
portfolio:

βi =
cov

(
Ri, R

mkt
)

σ2 (Rmkt)

Contrary to idiosyncratic risks, systematic risk Rmkt cannot be diversified, and
investors are compensated for taking this risk. This means that the market
risk premium is positive (E

[
Rmkt

]
− r > 0) whereas the expected return of

idiosyncratic risk is equal to zero. By definition, the idiosyncratic risk of asset
i is equal to:

εi = (Ri − r)− βi
(
E
[
Rmkt

]
− r
)

with E [εi] = 0. As explained above, this idiosyncratic risk is not rewarded
because it can be hedged. In this framework, we obtain the one-factor model
given by the following equation:

Ri = αi + βiR
mkt + εi (12.2)

where αi = (1− βi) r and εi = εi − βi
(
Rmkt − E

[
Rmkt

])
is a white noise

process2. Because εi is a new parametrization of the idiosyncratic risk, it is
easy to show that this specific factor is independent from the common factor
Rmkt and the other specific factors εj . If we assume that asset returns are
normally distributed, we have Rmkt ∼ N

(
E
[
Rmkt

]
, σ2

mkt

)
and: ε1

...
εn

 ∼ N (0,diag
(
σ̃2

1 , . . . , σ̃
2
n

))

In the capital asset pricing model, it is obvious that the risk of the system
(R1, . . . , Rn) is due to the common risk factor also called the systematic risk
factor. Indeed, a stress S can only be transmitted to the system by a shock
on Rmkt:

S
(
Rmkt

)
=⇒ S (R1, . . . , Rn)

2εi is a new form of the idiosyncratic risk.
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This is the traditional form of systemic risk. In the CAPM, idiosyncratic risks
are not a source of systemic risk:

S (εi) 6=⇒ S (R1, . . . , Rn)

because the specific risk εi only affects one component of the system, and not
all the components.

In practice, systemic risk can also occur because of an idiosyncratic shock.
In this case, we distinguish two different transmission channels:

1. The first channel is the impact of a specific stress on the systematic risk
factor:

S (εi) =⇒ S
(
Rmkt

)
=⇒ S (R1, . . . , Rn)

This transmission channel implies that the assumption εi ⊥ Rmkt is not
valid.

2. The second channel is the impact of a specific stress on the other specific
risk factors:

S (εi) =⇒ S (ε1, . . . , εn) =⇒ S (R1, . . . , Rn)

This transmission channel implies that the assumption εi ⊥ εj is not
valid.

Traditional financial models (CAPM, APT) fail to capture these two channels,
because they neglect some characteristics of systemic factors: the feedback
dynamic of specific risks, the possibility of multiple equilibria and the network
density.

The distinction between systematic and idiosyncratic shocks is done by De
Bandt and Hartmann (2000). However, as noted by Hansen (2012), system-
atic risks are aggregate risks that cannot be avoided. A clear example is the
equity risk premium. In this case, systematic risks are normal and inherent to
financial markets and there is no reason to think that we can prevent them.
In the systemic risk literature, common or systematic risks reflect another
reality. They are abnormal and are viewed as a consequence of simultaneous
adverse shocks that affect a large number of system components (De Bandt
and Hartmann, 2000). In this case, the goal of supervisory policy is to prevent
them, or at least to mitigate them. In practice, it is however difficult to make
the distinction between these two concepts of systematic risk. In what follows,
we will use the term systematic market risk for normal shocks, even if they
are severe and we now reserve the term systematic risk for abnormal shocks.

12.1.2 Sources of systemic risk

De Bandt and Hartmann (2000) explained that shocks and propagation
mechanisms are the two main elements to characterize systemic risk. If we
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consider our previous analysis, the shock corresponds to the initial stress S
whereas the propagation mechanism indicates the transmission channel =⇒
of this initial shock. It is then useful to classify the several sources of sys-
temic risk depending on the nature of the (systematic) shock or the type of
propagation3.

12.1.2.1 Systematic shocks

Benoit et al. (2015) list four main systematic shocks: asset-price bubble
risk, correlation risk, leverage risk and tail risk. In what follows, we give their
characteristics and some examples. However, even if these risks recover dif-
ferent concepts, they are also highly connected and the boundaries between
them are blurred.

Asset-price (or speculative) bubble corresponds to a situation where prices
of an asset class rise so sharply that they strongly deviate from their funda-
mental values4.The formation of asset bubbles implies that many financial
institutions (banks, insurers, asset managers and asset owners) are exposed
to the asset class, because they are momentum investors. They prefer to ride
the bubble and take advantage of the situation, because being a contrarian
investor is a risky strategy5. In this context, the probability of crash occurring
increases with investors’ belief that “they can sell the asset at an even higher
price in the future” (Brunnermeier and Oehmke, 2013). Examples of specu-
lative bubbles are Japanese asset bubble in the 1980’s, the dot.com bubble
between 1997 and 2000 and the United States housing bubble before 2007.

Correlation risk means that financial institutions may invest in the same
assets at the same time. They are several reasons to this phenomenon. Herd
behavior is an important phenomenon in finance (Grinblatt et al., 1995; Wer-
mers, 1999; Acharya and Yorulmazer, 2008). It corresponds to the tendency
for mimicking the actions of others. According to Devenow and Welch (1996),
“such herding typically arises either from direct payoff externalities (negative
externalities in bank runs; positive externalities in the generation of trading
liquidity or in information acquisition), principal-agent problems (based on
managerial desire to protect or signal reputation), or informational learning
(cascades)” . Another reason that explains correlated investments is the regu-
lation, which may have a high impact on the investment behavior of financial
institutions. Examples include the liquidity coverage ratio, national regula-
tions of pension funds, Solvency II, etc. Finally, a third reason is the search
of diversification or yield. Indeed, we generally notice a strong enthusiasm for

3Concerning idiosyncratic risks, they are several sources of stress, but they can all be
summarized by the default of one system’s component.

4A bubble can be measured by the price-to-earnings (or P/E) ratio, which is equal to
the current share price divided by the earnings per share. For instance, technology stock
had an average price-to-earnings ratio larger than 100 in March 2000.

5It is extremely difficult for a financial institution to miss the trend from a short-term
business perspective and to see the other financial institutions be successful.



320 Lecture Notes on Risk Management & Financial Regulation

an asset class which is is considered as an investment that helps to diversify
portfolios or improve their return.

In periods of expansion, we observe an increase of leverage risk, because
financial institutions want to benefit from the good times of the business
cycle. As the expansion proceeds, investors becomes then more optimistic and
the appetite for risky investments and leverage develops6. However, a high
leverage is an issue in a stressed period, because of the drop of asset prices.
Theoretically, the stress S can not be lower than the opposite of the inverse
of the financial institution’s leverage ratio LR in order to maintain its safety:

S ≤ − 1

LR

For instance, in the case where LR is equal to 5, the financial institution de-
faults if the stress is less than −20%. In practice, the stress tolerance depends
also on the liquidity constraints. It is then easier to leverage a portfolio in a
period of expansion than to deleverage it in a period of crisis, where we gen-
erally face liquidity problems. Geanakoplos (2010) explained the downward
spiral created by leverage by the amplification mechanism due to the demand
of collateral assets7. Indeed, decline in asset prices results in asset sales of
leveraged investors because of margin call requirements and asset sales results
in decline in asset prices. Leverage induces then non-linear and threshold ef-
fects that can create systemic risk. The failure of LTCM is a good illustration
of leverage risk (Jorion, 2000).

The concept of tail risk suggests that the decline in one asset class is
abnormal with respect to the normal risk. This means that the probability to
observe a tail event is very small. Generally, the normal risk is measured by
the volatility. For instance, an order of magnitude is 20% for the long-term
volatility of the equity asset class. The probability to observe an annual drop
in equities larger than 40% is equal to 2.3%. An equity market crash can
therefore not be assimilated to a tail event. By contrast, an asset class whose
volatility is equal to 2.5% will experience a tail risk if the prices are 20%
lower than before. In this case, the decrease represents eight times the annual
volatility. In Figure 12.1, we have reported these two examples of normal and
abnormal risks. When the ratio between the drawdown8 and the volatility is
higher (e.g. larger than 4), this generally indicates the occurrence of a tail
risk. The issue with tail risks is that they are rarely observed and financial
institutions tend to underestimate them. Acharya et al. (2010) even suggested
that tail risk investments are sought by financial institutions. Such examples
are carry or short volatility strategies. For instance, investing in relatively
high credit-quality bonds is typically a tail risk strategy. The rationale is to
carry the default risk, to capture the spread and to hope that the default will

6This is known as the Minsky’s financial instability hypothesis.
7see Section 4.3 in page 256.
8It is equal to the maximum loss expressed in percent.
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never happen. However, the credit crisis in 2007-2008 showed that very low
probability events may occur in financial markets.

FIGURE 12.1: Illustration of tail risk

The distinction between the four systematic risks is rather artificial and
theoretical. In practice, they are highly related. For instance, leverage risk is
connected to tail risk. Thus, the carry strategy is generally implemented using
leverage. Tail risk is related to bubble risk, which can be partially explained
by the correlation risk. In fact, it is extremely difficult to identify a single
cause, which defines the zero point of the systemic crisis. Sources of systemic
risk are correlated, even between an idiosyncratic event and systematic risks.

12.1.2.2 Propagation mechanisms

As noted by De Bandt and Hartmann (2000), transmission channels of sys-
temic risk are certainly the main element to understand how a systemic crisis
happen in an economy. Indeed, propagation mechanisms are more important
than the initial (systematic or idiosyncratic) shock, because most of shocks
do not produce systemic crisis if they are not spread to the real economy.
Among the diversity of propagation mechanisms, academics and regulators
have identified three major transmission channels: networks effects, liquidity
channel and critical function failure.

Network effects stem from the interconnectedness of financial institutions
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and can be seen as the system-wide counterpart of an institution’s counter-
party risk. Network effect is a general term describing the transmission of a
systemic shock from one particular entity and market to several entities or
markets. In the case of LTCM, systemic risk stemmed from the interconnec-
tion between LTCM and the banking system combined with the high leverage
strategy pursued by the hedge fund. This created an over sized exposure for
the banking system to counterparty credit risk from one single entity. Hence,
LTCM’s idiosyncratic risk was transferred to the entire financial system and
became a source of systemic risk. The early and influential work of Allen and
Gale (2000) showed that this source of financial contagion is highly contin-
gent on the network’s structure and on the size of the shock. Their model
also suggests that a fully connected network might be more resilient than an
incomplete network, contradicting the idea that systemic risk increases with
average interconnectedness. However, interconnectedness of an individual en-
tity is central to the notion of it being “systemically important”. In the banking
industry, balance-sheet contagion is an important source of systemic risk and
is linked to the counterparty credit risk. The complexity of the banking net-
work can create domino effects and feedback loops, because the failure of one
bank is a signal on the health of the other banks. This informational contagion
is crucial to understand the freeze of the interbank market during the 2008
financial crisis. Informational contagion is also an important factor of bank
runs (Diamond and Dybvig, 1983). However, network effects are not limited
to the banking system. Thus, the subprime crisis showed that they concern
the different actors of financial system. It was the case with insurance compa-
nies9 and asset managers. In this last case, money market funds (MMF) were
notably impacted, forcing some unprecedented measures as the temporary
guarantee of money market funds against losses by the U.S. Treasury:

“Following the bankruptcy of Lehman Brothers in 2008, a well-
known fund – the Reserve Primary Fund – suffered a run due
to its holdings of Lehman’s commercial paper. This run quickly
spread to other funds, triggering investors’ redemptions of more
than USD 300 billion within a few days of Lehman’s bankruptcy.
Its consequences appeared so dire to financial stability that the
U.S. government decided to intervene by providing unlimited de-
posit insurance to all money market fund deposits. The interven-
tion was successful in stopping the run but it transferred the entire
risk of the USD 3 trillion money market fund industry to the gov-
ernment” (Kacperczyk and Schnabl, 2013).

Liquidity is another important propagation mechanism of systemic risk.
For instance, the Global Financial Crisis can be seen as the superposition
of the subprime crisis, affecting primarily the mortgage and credit derivative
markets and by extension the global banking system, and a liquidity fund-

9The most famous example is the AIG’s bailout by the U.S. government in late 2008.
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ing crisis following the demise of Lehman Brothers, which affected interbank
markets and more broadly the shadow banking system. In this particular case,
the liquidity channel caused more stress than the initial systematic event of
subprime credit. As shown previously, the concept of liquidity is multi-faceted
and recovers various dimensions10 that are highly connected. In this context,
liquidity dry-up events are difficult to predict or anticipate, because they can
happen suddenly. This is particular true for the market liquidity with the
recent flash crash/rally events11. Brunnermeier and Pedersen (2009) demon-
strated that a demand shock can create a flight-to-quality environment in
which liquidity and loss spirals can arise simply due to funding requirements
on speculators such as margin calls and repo haircuts. In some instances, a
liquidity dry-up event resulting from a flight-to-quality environment can result
in runs, fire sales, and asset liquidations in general transforming the market
into a contagion mechanism. This is particularly true if the market size of the
early players affected by the shock is large enough to induce a large increase
in price pressure. The likelihood and stringency of these spirals is exacerbated
by high leverage ratios.

Besides network effects and liquidity-based amplification mechanisms, the
third identified transmission channel for systemic risk relates to the specific
function a financial institution may come to play in a specific market, either
because of its size relative to the market or because of its ownership of a specific
skill which makes its services essential to the functioning of that market. De
Bandt and Hartmann (2000) identified payment and settlement systems as
the main critical function that can generate systemic risk. The development
of central counterparties, which is promoted by the recent financial regulation,
is a response to mitigate network and counterparty credit risks, but also to
strengthen the critical function of clearing systems. Other examples of critical
services concern the entire investment chain from the asset manager to the
asset owner, for instance securities lending intermediation chains or custody
services.

12.1.3 Supervisory policy responses

The strength of the Global Financial Crisis led to massive government in-
terventions around the world to prop up failing financial institutions, seen as
“too big too fail”. Public concern about the negative externalities of such inter-
ventions called pressingly for structural reforms to prevent whenever possible
future similar events. The crisis further brought to light, among other key fac-

10We recall that the main dimensions are market/funding liquidity, idiosyn-
cratic/systematic liquidity, domestic/global liquidity and inside/outside liquidity (see Chap-
ter 6 in page 311).

11Examples are the flash crash of May 6, 2010 (US stock markets), the flash rally of
October 15, 2014 (US Treasury bonds), the Swiss Franc move of January 15, 2015 (removal
of CHF pleg to EUR) and the market dislocation of August 24, 2015 (stock markets and
US ETFs).
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tors, the failure of regulation to keep up with the complexity of the activities
of global financial institutions. In particular, calls for prudential reforms were
made around the world to create mechanisms to monitor, prevent and resolve
the liquidation of financial institutions without the need for government inter-
vention. Consequently, a vast program of financial and institutional reforms
was undertaken around the world.

12.1.3.1 A new financial regulatory structure

As explained in the introduction of this chapter, the Financial Stability
Board is an international oversight institution created in April 2009 to mon-
itor the stability of the global financial system, and not only the activities
of banking and insurance industries12. Indeed, the 2008 financial crisis also
highlighted the increasing reliance of large institutions on the shadow bank-
ing system. This refers to the broad range of short-term financing products and
activities performed by non-bank actors in the financial markets and there-
fore historically not subject to the same regulatory supervision as banking
activities. This explained that the FSB has also the mandate to oversee the
systemic risk induced by shadow banking entities13. Besides the analysis of
the financial system, the main task of the FSB is the identification of sys-
temically important financial institutions (SIFI). FSB (2010) defines them as
institutions whose “distress or disorderly failure, because of their size, com-
plexity and systemic interconnectedness, would cause significant disruption to
the wider financial system and economic activity”. It distinguishes between
three types of SIFIs:

1. G-SIBs correspond to global systemically important banks;

2. G-SIIs designate global systemically important insurers;

3. the third category is defined with respect to the two previous ones; it
incorporates other SIFIs than banks and insurers (non-bank non-insurer
global systemically important financial institutions or NBNI G-SIFIs).

Every year since 2013, the FSB publishes the list of G-SIFIs. In Tables 12.1
and 12.2, we report the 2015 update list of G-SIBs and G-SIIs. At this time,
NBNI G-SIFIs are not identified, because the assessment methodology is not
achieved14.

Systemic risk is also monitored at the regional level with the European Sys-
temic Risk Board (ESRB) for the European Union and the Financial Stability
Oversight Council (FSOC) for the United States. The ESRB was established

12For these two financial sectors, the FSB collaborates with the Basel Committee on
Banking Supervision and the International Association of Insurance Supervisors (IAIS).

13In this last case, the FSB relies on the works of the International Organization of
Securities Commissions (IOSCO).

14See the discussion in page 332.
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TABLE 12.1: List of global systemically important banks (November 2015)

Agricultural Bank of China Bank of America Bank of China
Bank of New York Mellon Barclays BNP Paribas
China Construction Bank Citigroup Credit Suisse
Deutsche Bank Goldman Sachs Crédit Agricole
BPCE HSBC ICBC
ING Bank JP Morgan Chase Mitsubishi UFJ FG
Mizuho FG Morgan Stanley Nordea
Royal Bank of Scotland Santander Société Générale
Standard Chartered State Street Sumitomo Mitsui FG
UBS UniCredit Wells Fargo

Source: FSB (2015), 2015 Update of List of Global Systemically Important Banks.

TABLE 12.2: List of global systemically important insurers (November 2015)

Aegon Allianz AIG
Aviva AXA MetLife
Ping An Group Prudential Financial Prudential plc

Source: FSB (2015), 2015 Update of List of Global Systemically Important
Insurers.

on 16 December 2010 and is part of the European System of Financial Supervi-
sion (ESFS), the purpose of which is to ensure supervision of the EU financial
system15. As established under the Dodd-Frank reform (21 July 2010), the
FSOC is composed of the Secretary of the Treasury, the Chairman of the
Federal Reserve and members of US supervision bodies (CFTC, FDIC, OCC,
SEC, etc.).

The Global Financial Crisis had also an impact on the banking supervision
structure, in particular in U.S. and Europe. Since 2010, this is the Federal Re-
serve Board which is in charge to directly supervise large banks and any firm
designated as systemically significant by the FSOC (Murphy, 2015). The other
banks continue to be supervised by the Federal Deposit Insurance Corporation
(FDIC) and the Office of the Comptroller of the Currency (OCC). In Europe,
each bank was supervised by its national regulators until the establishment
of the Single Supervisory Mechanism (SSM). Starting from 4 November 2014,
large European banks are directly supervised by the European Central Bank
(ECB), while national supervisors are in a supporting role. This concerns
about 120 significant banks and represent 80% of banking assets in the euro

15Besides the ESRB, the ESFS comprises the European Banking Authority (EBA), the
European Insurance and Occupational Pensions Authority (EIOPA), the European Securi-
ties and Markets Authority (ESMA) and the Joint Committee of the European Supervisory
Authorities.
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area. For each bank regulated by the ECB, a joint supervisory team (JST) is
designated. Its main task is to perform the Supervisory Review and Evaluation
Process (SREP), propose the supervisory examination programme, implement
the approved supervisory decisions and ensure coordination with the on-site
inspection teams and liaise with the national supervisors. Public awareness of
the systemic risk has also led some countries to reform national supervision
structures. For instance in the United Kingdom, the Financial Services Au-
thority (FSA) is replaced in April 2013 by three new supervisory bodies: the
Financial Policy Committee (FPC), which is responsible for macro-prudential
regulation, the Prudential Regulation Authority (PRA), which is responsi-
ble for micro-prudential regulation of financial institutions and the Financial
Conduct Authority (FCA), which is responsible for markets regulation.

Remark 48 The 2008 financial crisis has also impacted other financial sec-
tors than the banking sector, but not to the same degree. Nevertheless, the
powers of existing authorities have been expanded in asset management and
markets regulation (ESMA, SEC, CFTC). In 2010, the European Insurance
and Occupational Pensions Authority (EIOPA) was established in order to
ensure a general supervision at the level of the European Union.

12.1.3.2 A myriad of new standards

Reforms of the financial regulatory framework were also attempted around
the world in order to protect the consumers. Thus, the Dodd-FrankWall Street
Reform and Consumer Protection Act was signed into law in the U.S. in July
2010. It is the largest financial regulation overhaul since 1930. Besides the
reform of the US financial regulatory structure, it also concerns investment
advisers, hedge funds, insurance, central counterparties, credit rating agencies,
derivatives, consumer financial protection, mortgages, etc. One of the most
famous proposition is the Volcker rule, which prohibits a bank from engaging
in proprietary trading and from owning hedge funds and private equity funds.
Another controversial proposition is the Lincoln amendment (or swaps push-
out rule), which would prohibit federal assistance to swaps entities.

In Europe, directives on the regulations of markets in financial instruments
(MiFID 1 and 2) from 2007 to 2014 as well as regulations on packaged retail
and insurance-based investment products (PRIIPS) with the introduction of
the key information document (KID) in 2014 came to reinforce the regu-
lation and transparency of financial markets and the protection of investors.
European Market Infrastructure Regulation (EMIR) is another important Eu-
ropean Union regulation, whose aim is to increase the stability of the OTC
derivative markets. It introduces reporting obligation for OTC derivatives
(trade repositories), clearing obligation for eligible OTC derivatives, indepen-
dent valuation of OTC derivatives, common rules for central counterparties
and post-trading supervisory.

However, the most important reforms concern the banking sector. Many
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standards of the Basel III Accord are directly related to systemic risk. Capi-
tal requirements have been increased to strengthen the safety of banks. The
leverage ratio introduces constraints to limit the leverage of banks. The aim of
liquidity ratios (LCR and NSFR) is to reduce the liquidity mismatch of banks.
Stress testing programs have been highly developed. Another important mea-
sure is the designation of systemically important banks16, which are subject to
a capital surcharge ranging from 1% to 4.5%. All these micro-prudential ap-
proaches tend to mitigate idiosyncratic factors. However, common factors are
also present in the Basel III Accord. Indeed, the Basel Committee has intro-
duced a countercyclical capital buffer in order to increase the capital of banks
during excessive credit growth and to limit the impact of common factors on
the systemic risk. Another important change is the careful consideration of
counterparty credit risk. This includes of course the 1.25 factor to calculate
the default correlation ρ (PD) in the IRB approach17, but also the CVA capi-
tal charge. The promotion of CCPs since 2010 is also another example to limit
network effects and reduce the direct interconnectedness between banks. Last
but not least, the stressed VaR of the Basel 2.5 Accord had a strong impact
on the capital requirement for market risks.

Remark 49 Another important reform concerns resolution plans, which de-
scribe the banks’s strategy for rapid resolution if its financial situation were to
deteriorate or if it were to default. In Europe, the Bank Recovery and Resolu-
tion Directive (BRRD) applies in all banks and large investment firms since
January 2015. In the United States, the orderly liquidation authority (OLA)
of the Dodd-Frank Act provides a theoretical framework for bank resolution18.
In Japan, a new resolution regime became effective in March 2014 and ensures
a defaulted bank will be resolved via a bridge bank, where certain assets and
liabilities are transferred. More recently, the FSB achieves TLAC standard
for global systemically important banks. All these initiatives seek to build a
framework to resolve a bank failure without public intervention.

12.2 Systemic risk measurement
They are generally two ways of identify SIFIs. The first one is proposed

by supervisors and considers firm-specific information that are linked to the
systemic risk, such as the size or the leverage. The second approach has been
extensively used by academics and considers market information to measure
the impact of the firm-specific default on the entire system.

16It concerns both global (G-SIB) and domestic (D-SIB) systemically important banks
17See Remark 39 in Page 241.
18Bank resolution plans can be found at the following web page: www.federalreserve.

gov/bankinforeg/resolution-plans.htm.
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TABLE 12.3: Scoring system of G-SIBs
Category Indicator Weight

1 Size 1 Total exposures 1/5

2
2 Intra-financial system assets 1/15

Interconnectedness 3 Intra-financial system liabilities 1/15

4 Securities outstanding 1/15

3

5 Payment activity 1/15

Substitutability/financial 6 Assets under custody 1/15

institution infrastructure 7 Underwritten transactions in
1/15debt and equity markets

4 Complexity
8 Notional amount of OTC derivatives 1/15

9 Trading and AFS securities 1/15

10 Level 3 assets 1/15

5 Cross-jurisdictional activity 11 Cross-jurisdictional claims 1/10

12 Cross-jurisdictional liabilities 1/10

12.2.1 The supervisory approach

In what follows, we distinguish between the three categories defined by the
FSB: banks, insurers and non-bank non-insurer financial institutions.

12.2.1.1 The G-SIB assessment methodology

In order to measure the systemic risk of a bank, the BCBS (2014g) con-
siders 12 indicators across five large categories. For each indicator, the score
of the bank (expressed in basis points) is equal to the bank’s indicator value
divided by the corresponding sample total19

Indicator Score =
Bank Indicator
Sample Total

× 104

The indicator scores are then averaged to define the category scores and the
final score. The scoring system is summarized in Table 12.3. Each category
has a weight of 20% and represents one dimension of systemic risk. The size
effect (too big too fail) corresponds to the first category, but is also present in
all other categories. Network effects are reflected in Category 2 (interconnect-
edness) and Category 4 (complexity). The third category measures the degree
of critical functions, while the cross-jurisdictional activity tends to identify
global banks.

An example of the score computation is given in Table 12.4. It concerns
the G-SIB score of BNP Paribas in 2014. Using these figures, the size score is
equal to:

Score =
2 032

66 313
= 3.06%

19The sample consists of the largest 75 banks defined by the Basel III leverage ratio
exposure measure.
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TABLE 12.4: An example of calculating the G-SIB score

Category Indicator
Indicator 

value
(1)

Sample 

total
(1)

Indicator 

score
(2)

Category 

score
(2)

Size Total exposures 2,032 66,313 306 306

Intra-financial system assets 205 7,718 266

Intra-financial system liabilities 435 7,831 556

Securities outstanding 314 10,836 290

Payment activity 49,557 1,850,755 268

Assets under custody 4,181 100,012 418

Underwritten transactions in debt and 

equity markets
189 4,487 422

Notional amount of OTC derivatives 39,104 639,988 611

Trading and AFS securities 185 3,311 559

Level 3 assets 21 595 346

Cross-jurisdictional claims 877 15,801 555

Cross-jurisdictional liabilities 584 14,094 414

Final score 407
(1)

The figures are expressed in billion of EUR.
(2)

The figures are expressed in bps.

Cross-jurisdictional activity 485

Interconnectedness 370

Substitutability/financial 

insitution infrastructure
369

Complexity 505

Source: BCBS (2014), G-SIB Framework: Denominators; BNP Paribas (2014), Disclosure for G-SIBs indicators as of 31 December
2013.
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The interconnectedness score is an average of three indicator scores. We ob-
tain:

Score =
1

3

(
205

7 718
+

435

7 831
+

314

1 0836

)
=

2.656% + 5.555% + 2.898%

3
= 3.70%

The final score is an average of the five category scores:

Score =
1

5
(3.06% + 3.70% + 3.69% + 5.05% + 4.85%)

= 4.07%

Depending on the score value, the bank is then assigned to a specific bucket,
which is used to calculate its specific higher loss absorbency (HLA) require-
ment. The thresholds used to define the buckets are:

1. 130-229 for Bucket 1 (+1.0% CET1);

2. 230-329 for Bucket 2 (+1.5% CET1);

3. 330-429 for Bucket 3 (+2.0% CET1);

4. 430-529 for Bucket 4 (+2.5% CET1);

5. and 530-629 for Bucket 5 (+3.5% CET1).

For instance, the G-SIB score of BNP Paribas was 407 bps. This implies that
BNP Paribas belonged to Bucket 3 and the additional buffer was 2% common
equity tier 1 at the end of 2014.

In November 2015, the FSB has published the updated list of G-SIBs and
the required level of additional loss absorbency. There are no banks in Bucket
5. The two most G-SIBs are HSBC and JPMorgan Chase, which are assigned
to Bucket 4 (2.5% of HLA requirement). They are followed by Barclays, BNP
Paribas, Citigroup and Deutsche Bank (Bucket 3 and 2.0% of HLA require-
ment). Bucket 2 is composed of 5 banks (Bank of America, Credit Suisse,
Goldman Sachs, Mitsubishi UFJ FG and Morgan Stanley). The 19 remaining
banks given in Table 12.1 form Bucket 1.

Remark 50 The FSB and the BCBS consider a relative measure of the sys-
temic risk. They first select the universe of the 75 largest banks and then
defines a G-SIB as a bank which has a total score which is higher than the
average score20. This procedure ensures that there are always systemic banks.
Indeed, if the score are normally distributed, the number of systemic banks is
half the number of banks in the universe. This explains that they found 30
G-SIBs among 75 banks.

20It is equal to 104/75 ≈ 133.
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Roncalli and Weisang (2015) reported the average rank correlation (in %)
between the five categories for the G-SIBs as of end 2013:

100.0
84.6 100.0
77.7 63.3 100.0
91.5 94.5 70.1 100.0
91.4 90.6 84.2 95.2 100.0


We notice the high correlation coefficients21 between the first (size), sec-
ond (interconnectedness), fourth (complexity) and fifth categories (cross-
jurisdictional activity). This is not surprising that G-SIBs are the largest
banks in the world. In fact, the high correlation between the five measures
masks the multifaceted reality of systemic risk. This is explained by the ho-
mogeneous nature of global systemically important banks in terms of their
business model. Indeed, almost all these financial institutions are universal
banks mixing both commercial and investment banking.

Besides the HLA requirement, the FSB in consultation with the BCBS has
published in November 2015 its proposed minimum standard for “total loss –
absorbing capacity” (TLAC). According to FSB (2015d), “the TLAC standard
has been designed so that failing G-SIBs will have sufficient loss-absorbing and
recapitalization capacity available in resolution for authorities to implement
an orderly resolution that minimizes impacts on financial stability, maintains
the continuity of critical functions, and avoids exposing public funds to loss”.
In this context, TLAC requirements would be between 8% to 12%. This means
that the total capital would be between 19.5% and 25% of RWA for G-SIBs22
as indicated in Figure 12.2.

12.2.1.2 Identification of G-SIIs

In the case of insurers, the International Association of Insurance Super-
visors (IAIS) has developed an approach similar to the Basel Committee’s to
measure global systemically important insurers (or G-SIIs). The final score
is an average of five category scores: size, interconnectedness, substitutabil-
ity, non-traditional and non-insurance (NTNI) activities and global activity.
Contrary to the G-SIB scoring system, the G-SII scoring system does not use
an equal weight between the category scores. Thus, a 5% weight is applied
to size, substitutability and global activity, whereas interconnectedness and
NTNI activities represent respectively 40% and 45% of weighting. In fact, the
score highly depends on the banking activities (derivatives trading, short term
funding, guarantees,etc.) of the insurance company23.

21The highest correlation is between Category 4 and Category 5 (95.2%) whereas the
lowest correlation is between Category 2 and Category 3 (63.3%).

22Using Table 1.5 in page 24, we deduce that the total capital is equal to 6% of Tier 1
plus 2% of Tier 2 plus 2.5% of conservation buffer (CB) plus 1%− 3.5% of systemic buffer
(HLA) plus 8%− 12% of TLAC.

23See IAIS (2013a) in page 20.
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CET1
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4.5%

1.5%

2.0%

2.5%

1− 3.5%

8− 12%

19.5− 25%

FIGURE 12.2: Impact of the TLAC on capital requirements

12.2.1.3 Extension to NBNI SIFIs

In March 2015, the FSB published a second consultation document, which
proposed a methodology for the identification of NBNI SIFIs. The concerned
financial sectors were finance companies, market intermediaries, asset man-
agers and their funds. The scoring system was an imitation of the G-SII scoring
system with the same 5 categories. As noted by Roncalli and Weisang (2015),
this scoring system was not satisfying, because it failed to capture the most
important systemic risk of these financial institutions, which is the liquidity
risk. Indeed, a large amount of redemptions may create fire sales and affect
the liquidity of the underlying market. This liquidity mainly depends on the
asset class. For instance, we do not face the same risk when investing in an
equity fund and in a bond fund. Finally, the FSB has decided to postpone the
assessment framework for NBNI G-SIFIs and to work specifically on financial
stability risks from asset management activities.

12.2.2 The academic approach

Academics propose various methods to measure the systemic risk. Even if
they are heterogenous, most of them share a common pattern. They are gener-
ally based on publicly market data24. Among these different approaches, three
prominent measures are particularly popular: the marginal expected shortfall

24The reason is that academics do not have access to regulatory or private data.
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(MES), the delta conditional value-at-risk (∆ CoVaR) and the systemic risk
measure (SRISK).

Remark 51 In what follows, we define the different systemic risk measures
and derive their expression in the Gaussian case. Non-Gaussian and non-
parametric estimation methods will be presented in Chapter 14.

12.2.2.1 Marginal expected shortfall

This measure has been proposed by Acharya et al. (2010). Let wi and Li be
the exposure of the system to Institution i and the corresponding normalized
random loss. We note w = (w1, . . . , wn) the vector of exposures. The loss of
the system is equal to:

L (w) =

n∑
i=1

wiLi

We recall that the expected shortfall ESα (w) with confidence level α is the ex-
pected loss conditional that the loss is higher than the value-at-risk VaRα (w):

ESα (w) = E [L | L ≥ VaRα (w)]

The marginal expected shortfall of Institution i is then equal to:

MESi =
∂ ESα (w)

∂ wi
= E [Li | L ≥ VaRα (w)] (12.3)

In the Gaussian case (L1, . . . , Ln) ∼ N (µ,Σ), we have found that25:

MESi = µi +
φ
(
Φ−1 (α)

)
(1− α)

√
w>Σw

(Σw)i

Another expression of MES is then:

MESi = µi + βi (w)× (ESα (w)− E (L)) (12.4)

where βi (w) is the beta of the institution loss with respect to the total loss:

βi (w) =
cov (L,Li)

σ2 (L)
=

(Σw)i
w>Σw

Acharya et al. (2010) approximated the MES measure as the expected
value of the stock return Ri when the return Rmkt of the market portfolio is
below the 5% quantile:

MESi = −E
[
Ri | Rmkt ≤ F−1 (5%)

]
25See Equation (2.15) in page 117.
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where F is the cumulative distribution function of the market return Rmkt.
We have:

MESi = − 1

card (T)

∑
t∈T

Ri,t

where T represents the set of trading days, which corresponds to the 5% worst
days for the market returns. Another way of implementing the MES measure
is to specify the components of the system and the confidence level α for
defining the conditional expectation. For instance, the system can be defined
as a set of the largest banks and wi is the size of Bank i (measured by the
market capitalization or the total amount of assets).

Example 49 We consider a system composed of 3 banks. The total assets
managed by these banks are respectively equal to $139, $75 and $81 bn. We
assume that the annual normalized losses are Gaussian. Their means are equal
to zero whereas their standard deviations are set equal to 10%, 12% and 15%.
The correlations are given by the following matrix:

ρ =

 100%
75% 100%
82% 85% 100%


By considering a 95% confidence level, the value-at-risk of the system is

equal to $53.86 bn. Using the analytical results given in Section 2.3 in page
111, we deduce that the systemic expected shortfall ES95% of the entire system
reaches the amount of $67.55 bn. Finally, we calculate the MES and obtain the
values reported in Table 12.5. The MES is expressed in %. This means that
if the total assets managed by the first bank increases by $1 bn, the systemic
expected shortfall will increase by $0.19 bn. In the third column of the table,
we have indicated the risk contribution RCi, which is the product of the size
wi and the marginal expected shortfall MESi. This quantity is also called the
systemic expected shortfall of Institution i:

SESi = RCi = wi ×MESi

We have also reported the beta coefficient βi (w) (expressed in bps). Because
we have µi = 0, we verify that the marginal expected shortfall is equal to the
beta times the systemic expected shortfall.

The marginal expected shortfall can be used to rank the relative systemic
risk of a set of financial institutions. For instance, in the previous example, this
is the third bank that is the most risky according to the MES. However, the
first bank, which has the lowest MES value, has the highest systemic expected
shortfall, because its size is larger than the two other banks. This is why we
must not confuse the relative (or marginal) risk and the absolute risk.

The marginal expected shortfall has been criticized because it measures
the systematic risk of a financial institution, and not necessarily its systemic
risk. In Table 12.5, we give the traditional beta coefficient βi (w?), which is
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TABLE 12.5: Risk decomposition of the 95% systemic expected shortfall

Bank wi MESi SESi βi (w)
βi (w?)(in $ bn) (in %) (in $ bn) (in bps)

1 139 19.28 26.80 28.55 0.84
2 75 22.49 16.87 33.29 0.98
3 81 29.48 23.88 43.64 1.29

ESα 67.55

calculated with respect to the relative weights w?i = wi/
∑n
j=1 wj . As already

shown in Equation (12.4), ranking the financial institutions by their MES is
equivalent to rank them by their beta coefficients. In practice, we can never-
theless observe some minor differences because stock returns are not exactly
Gaussian.

12.2.2.2 Delta conditional value-at-risk

Adrian and Brunnermeier (2015) define the CoVaR as the value-at-risk of
the system conditional on some event Ei of Institution i:

Pr {L (w) ≥ CoVaRi (Ei)} = α

Adrian and Brunnermeier determine the risk contribution of Institution i as
the difference between the CoVaR conditional on the institution being in dis-
tressed situation and the CoVaR conditional on the institution being in normal
situation:

∆ CoVaRi = CoVaRi (Di = 1)− CoVaRi (Di = 0)

where Di indicates if the bank is in distressed situation or not. Adrian and
Brunnermeier use the value-at-risk to characterize the distress situation:

Di = 1⇔ Li = VaRα (Li)

whereas the normal situation corresponds to the case when the loss of Insti-
tution i is equal to its median26:

Di = 0⇔ Li = m (Li)

Finally, we obtain:

∆ CoVaRi = CoVaRi (Li = VaRα (Li))− CoVaRi (Li = m (Li)) (12.5)

In the Gaussian case and using the previous notations, we have:(
Li

L (w)

)
∼ N

((
µi
w>µ

)
,

(
σ2
i (Σw)i

(Σw)i w>Σw

))
26In this case, we have m (Li) = VaR50% (Li).
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We deduce that27:

L (w) | Li = `i ∼ N
(
µ (`i) , σ

2 (`i)
)

with:

µ (`i) = w>µ+
(`i − µi)

σ2
i

(Σw)i

and:

σ2 (`i) = w>Σw −
(Σw)

2
i

σ2
i

It follows that:

CoVaRi (Li = `) = µ (`i) + Φ−1 (α)σ (`i)

= w>µ+
(`i − µi)

σ2
i

(Σw)i + Φ−1 (α)

√
w>Σw −

(Σw)
2
i

σ2
i

Because VaRα (Li) = µi + Φ−1 (α)σi and m (Li) = E (Li) = µi, we obtain:

∆ CoVaRi = CoVaRi

(
Li = µi + Φ−1 (α)σi

)
− CoVaRi (Li = µi)

= Φ−1 (α)×
(Σw)i
σi

= Φ−1 (α)×
n∑
j=1

wjρi,jσj

Another expression of ∆ CoVaRi is:

∆ CoVaRi = Φ−1 (α)× σ2 (L)× βi (w)

σi
(12.6)

The Gaussian case highlights different properties of the CoVaR measure:

• If the losses are independent meaning that ρi,j = 0, the Delta CoVaR is
the unexpected loss, which is the difference between the nominal value-
at-risk and the nominal median (or expected) loss:

∆ CoVaRi = Φ−1 (α)× wi × σi
= wi × (VaRα (Li)−m (Li))

= wi ×ULα (Li)

• If the losses are perfectly dependent meaning that ρi,j = 1, the Delta

27We use results of the conditional expectation given in Appendix A.2.2.3 in page 456.
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CoVaR is the sum over all the financial institutions of the unexpected
losses:

∆ CoVaRi = Φ−1 (α)×
n∑
j=1

wjσj

=

n∑
j=1

wj ×ULα (Lj)

In this case, the Delta CoVaR measure does not depend on the financial
institution.

• The sum of all Delta CoVaRs is a weighted average of the unexpected
losses:

n∑
i=1

∆ CoVaRi = Φ−1 (α)×
n∑
i=1

n∑
j=1

wjρi,jσj

= Φ−1 (α)×
n∑
j=1

wjσj

n∑
i=1

ρi,j

= n

n∑
j=1

ρ̄j × wj ×ULα (Lj)

where ρ̄j is the average correlation between institution j and the other in-
stitutions (including itself). This quantity has no financial interpretation
and is not a coherent risk measure, which satisfies the Euler principle.

Remark 52 In practice, losses are approximated by stock returns. Empirical
results show that MES and CoVaR measures may give different rankings. This
can be easily explained in the Gaussian case. Indeed, measuring systemic risk
with MES is equivalent to analyze the beta of each financial institution whereas
the CoVaR approach consists of ranking them by their beta divided by their
volatility. If the beta coefficients are very close, the CoVaR ranking will be
highly sensitive to the volatility of the financial institution’s stock.

We consider Example 49 and report in Table 12.6 the calculation of the
95% CoVaR measure. If Bank 1 suffers a loss larger than its 95% value-at-
risk ($22.86 bn), it induces a Delta CoVaR of $50.35 bn. This systemic loss
includes the initial loss of Bank 1, but also additional losses of the other banks
due to their interconnectedness. We notice that CoVaR and MES produce the
same ranking for this example. However, if we define the systemic risk as the
additional loss on the other components of the system28, we find that the
stress on Bank 2 induces the largest loss on the other banks29.

28This additional loss is equal to CoVaRi−wi ×VaRα (Li).
29The additional loss (expressed in $ bn) is equal to 27.49 for Bank 1, 34.13 for Bank 2

and 31.33 for Bank 3.
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TABLE 12.6: Calculation of the 95% CoVaR measure

Bank wi VaRα (Li) CoVaRi (E) ∆ CoVaRi

(in $ bn) (in %) (in $ bn) Di = 1 Di = 0 (in $ bn)
1 139 16.45 22.86 69.48 19.13 50.35
2 75 19.74 14.80 71.44 22.50 48.94
3 81 24.67 19.98 67.69 16.37 51.32

The dependence function between financial institutions is very important
when calculating the CoVaR measure. For instance, we consider again Exam-
ple 49 with a constant correlation matrix. In Figure 12.3, we represent the
relationship between ∆ CoVaRi and the uniform correlation ρ. When losses
are independent, we obtain the value-at-risk of each bank. When losses are
comonotonic, ∆ CoVaRi is the sum of the VaRs. Because losses are perfectly
correlated, a stress on one bank is entirely transmitted to the other banks.

FIGURE 12.3: Impact of the uniform correlation on ∆ CoVaRi

12.2.2.3 Systemic risk measure

Another popular risk measure is the systemic risk measure (SRISK) pro-
posed by Acharya at al. (2012), which is a new form of the systemic ex-
pected shortfall of Acharya at al. (2010) and which was originally developed
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by Brownlees and Engle (2015) in 2010. Using a stylized balance sheet, the
capital shortfall CSi,t of Institution i at time t is the difference between the
required capital Ki,t and the market value of equity Vi,t:

CSi,t = Ki,t − Vi,t

We assume that Ki,t is equal to kAi,t where Ai,t is the asset value and k is the
capital ratio (typically 8% in Basel II). We also have Ai,t = Di,t + Vi,t where
Di,t represents the debt value30. We deduce that:

CSi,t = k (Di,t + Vi,t)− Vi,t
= kDi,t − (1− k)Vi,t

We define the capital shortfall of the system as the total amount of capital
shortfall CSi,t:

CSt =

n∑
i=1

CSi,t

Acharya et al. (2012) define the amount of systemic risk as the expected value
of the capital shortfall conditional to a systemic stress S:

SRISKt = E [CSt+1|S]

= E

[
n∑
i=1

CSi,t+1

∣∣∣∣∣S
]

=

n∑
i=1

kE [Di,t+1|S]− (1− k)E [Vi,t+1|S]

They also assume that E [Di,t+1|S] ≈ Di,t and:

E [Vi,t+1|S] = (1−MESi,t)Vi,t

where MESi,t is the marginal expected shortfall conditional to the systemic
risk S. By using the leverage ratio LRi,t defined as the asset value divided by
the market value of equity:

LRi,t =
Ai,t
Vi,t

= 1 +
Di,t

Vi,t
,

they finally obtain the following expression of the systemic risk31:

SRISKt =

n∑
i=1

(k (LRi,t − 1)− (1− k) (1−MESi,t))× Vi,t

30Here, we assume that the bank capital is equal to the market value, which is not the
case in practice.

31We have Di,t = (LRi,t − 1)Vi,t.
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We notice that the systemic risk can be decomposed as the sum of the risk
contributions SRISKi,t. We have:

SRISKi,t = ϑi,t × Vi,t (12.7)

with:
ϑi,t = kLRi,t + (1− k) MESi,t−1 (12.8)

In these two formulas, k and MESi,t are expressed in % while SRISKi,t and
Vi,t are measured in $. SRISKi,t is then a linear function of the market capi-
talization Vi,t, which is a proxy of the capital in this model. The scaling factor
ϑi,t depends on 4 parameters:

1. k is the capital ratio. In the model, we have Ki,t = kAi,t whereas the
capital Ki,t is equal to kRWAi,t in Basel Accords. Under some assump-
tions, k can be set equal to 8% in the Basel I or Basel II framework. For
Basel III and Basel IV, we must use a higher value, especially for SIFIs.

2. LRi,t is the leverage ratio of Institution i. The higher the leverage ratio,
the higher the systemic risk.

3. The systemic risk is an increasing function of the marginal expected
shortfall. Because we have MESi,t ∈ [0, 1], we deduce that:

(kLRi,t − 1)× Vi,t ≤ SRISKi,t ≤ k (LRi,t − 1)× Vi,t

A high value of the MES decreases the market value of equity, and then
the absorbency capacity of systemic losses.

4. The marginal expected shortfall depends on the stress scenario. In the
different publications on the SRISK measure, the stress S generally cor-
responds to a 40% drop of the equity market:

MESi,t = −E
[
Ri,t+1 | Rmkt

t+1 ≤ −40%
]

Example 50 We consider a universe of 4 banks, whose characteristics are
given in the table below32:

Bank Vi,t LRi,t µi σi ρi,mkt

1 57 23 0% 25% 70%
2 65 28 0% 24% 75%
3 91 13 0% 22% 68%
4 120 20 0% 20% 65%

We assume that the expected return µmkt and the volatility σmkt of the equity
market are 0% and 17%.

32The market capitalization Vi,t is expressed in $ bn.
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Using the conditional expectation formula, we have:

E
[
Ri,t+1 | Rmkt

t+1 = S
]

= µi + ρi,mkt
(S− µmkt)

σmkt
σi

We can then calculate the marginal expected shortfall and deduce the scal-
ing factor and the systemic risk contribution thanks to Equations (12.7) and
(12.8). Results are given in Table 12.7. In this example, the main contributors
are Bank 2 because of its high leverage ratio followed by Bank 4 because of its
high market capitalization. In Table 12.8, we show how the SRISK measure
changes with respect to the stress S.

TABLE 12.7: Calculation of the SRISK measure (S = −40%)

Bank MESi,t ϑi,t
SRISKi,t

(in %) (in $ bn) (in %)
1 41.18 1.22 69.47 22.11
2 42.35 1.63 105.93 33.70
3 35.20 0.36 33.11 10.54
4 30.59 0.88 105.77 33.65

TABLE 12.8: Impact of the stress S on SRISK

Bank S = −20% S = −40% S = −60%
(in $ bn) (in %) (in $ bn) (in %) (in $ bn) (in %)

1 58.7 22.6 69.5 22.1 80.3 21.7
2 93.3 36.0 105.9 33.7 118.6 32.1
3 18.4 7.1 33.1 10.5 47.8 13.0
4 88.9 34.3 105.8 33.7 122.7 33.2

According to Acharya et al. (2012), the most important SIFIs in the United
States were Bank of America, JP Morgan Chase, Citigroup and Goldman
Sachs in 2012. They also noticed that 4 insurance companies were also in the
top 10 (MetLife, Prudential Financial, AIG and Hertford Financial). Engle
et al. (2015) conducted the same exercise on European institutions with the
same methodology. They found that the five most important SIFIs in Europe
were Deutsche Bank, Crédit Agricole, Barclays, Royal Bank of Scotland and
BNP Paribas. Curiously, HSBC was only ranked at the 15th place and the
first insurance company (AXA) was 16th. This ranking system is updated in
a daily basis by the Volatility Institute at New York University33. In Tables
12.9, 12.10 and 12.11, we report the 10 largest systemic risk contributions by
regions at the end of November 2015. The ranking within a region seems to be
coherent, but the difference in the magnitude of SRISK between American,
European and Asian financial institutions is an issue.

33The internet web page is vlab.stern.nyu.edu.
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TABLE 12.9: Systemic risk contributions in America (2015-11-27)

Rank Institution SRISKi,t MESi,t LRi,t(in $ bn) (in %) (in %)
1 Bank of America 49.7 10.75 2.75 11.42
2 Citigroup 44.0 9.52 3.23 10.83
3 JP Morgan Chase 42.6 9.22 3.09 9.74
4 Prudential Financial 37.6 8.13 3.07 19.64
5 MetLife 33.9 7.33 2.85 15.40
6 Morgan Stanley 28.6 6.20 3.50 12.60
7 Banco do Brasil 24.1 5.22 4.00 29.45
8 Goldman Sachs 20.3 4.38 3.21 10.51
9 Manulife Financial 20.1 4.36 3.43 15.04

10 Power Corp of Canada 16.2 3.50 2.82 26.81

TABLE 12.10: Systemic risk contributions in Europe (2015-11-27)

Rank Institution SRISKi,t MESi,t LRi,t(in $ bn) (in %) (in %)
1 BNP Paribas 94.1 8.63 3.42 33.41
2 Crédit Agricole 88.1 8.09 4.22 59.34
3 Barclays 86.3 7.92 4.31 36.60
4 Deutsche Bank 86.1 7.90 4.32 53.61
5 Société Générale 61.3 5.63 3.85 38.74
6 Royal Bank of Scotland 39.5 3.63 3.15 24.23
7 Banco Santander 38.3 3.51 3.79 18.57
8 HSBC 34.5 3.16 2.49 15.96
9 UniCredit 33.1 3.04 3.58 27.21

10 London Stock Exchange 31.3 2.87 2.90 52.67

TABLE 12.11: Systemic risk contributions in Asia (2015-11-27)

Rank Institution SRISKi,t MESi,t LRi,t(in $ bn) (in %) (in %)
1 Mitsubishi UFJ FG 121.5 9.45 2.41 24.80
2 China Construction Bank 117.3 9.12 2.61 17.01
3 Bank of China 94.5 7.35 2.53 15.21
4 Mizuho FG 93.7 7.29 2.10 31.84
5 Agricultural Bank of China 92.0 7.16 0.66 19.20
6 Sumitomo Mitsui FG 85.7 6.67 2.71 26.99
7 ICBC 58.4 4.54 0.84 13.80
8 Bank of Communications 45.0 3.50 2.47 16.89
9 Industrial Bank 29.4 2.29 1.38 17.94

10 National Australia Bank 27.4 2.13 3.27 13.48
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Remark 53 The main drawback of the model is that SRISKi,t is very sensi-
tive to the market capitalization with two effects. The direct effect (SRISKi,t =
ϑi,t × Vi,t) implies that the systemic risk is reduced when the equity market
is stressed, whereas the indirect effect due to the leverage ratio increases the
systemic risk. When we analyze simultaneous the two effects, the first effect
is greater. However, we generally observe an increase of the SRISK, because
the marginal expected shortfall is much higher in crisis periods.

12.2.2.4 Network measures

• Billio et al. (2012).

• Cont et al. (2013).

• Acemoglu et al. (2015).
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FIGURE 12.4: A completely connected network
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FIGURE 12.6: A partially dense network
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12.3 Shadow banking system

This section on the shadow banking has been included in this chapter
together with systemic risk, because we will see that they are highly connected.

12.3.1 Definition

The shadow banking system (SBS) can be defined as financial entities or
activities involved in credit intermediation outside the regular banking system
(FSB, 2011; IMF, 2014). This non-bank credit intermediation complements
banking credit, but is not subject to the same regulatory framework. Another
important difference is that “shadow banks are financial intermediaries that
conduct maturity, credit, and liquidity transformation without access to cen-
tral bank liquidity or public sector credit guarantees” (Pozsar et al., 2013. In
this context, shadow banks can raise similar systemic risk issues than regular
banks in terms of liquidity, leverage and asset-liability mismatch risks.

However, the main characteristic of shadow banking risk is certainly the
high interconnectedness within shadow banks and with the banking system.
If we describe the shadow banking system in terms of financial entities, it in-
cludes finance companies, broker-dealers and asset managers, whose activities
are essential for the functioning of the banking system. If we focus on instru-
ments, the shadow banking corresponds to short-term debt securities that are
critical for banks’ funding. In particular, this concerns money and repo mar-
kets. These linkages between the two systems can then create spillover risks,
because stress in the shadow banking system may be transmitted to the rest
of the financial system (IMF, 2014). For instance, run risk in shadow bank-
ing is certainly the main source of spillover effects and the highest concern of
systemic risk. The case of money market funds during the 2008 financial cri-
sis is a good example of the participation of the shadow banking to systemic
risk. This dramatic episode also highlights agency and moral hazard prob-
lems. Credit risk transfer using asset-backed commercial paper (ABCP) and
structured investment vehicles (SIV) is not always transparent for investors of
money market funds. This opacity risk increases redemption risk during peri-
ods of stress (IMF, 2014). This led the Federal Reserve to introduce the ABCP
money market mutual fund liquidity facility (AMLF) between September 2008
and February 2010 in order to support MMFs.

Concepts of shadow banking and NBNI SIFI are very close. To date, the
focus was more on financial entities that can be assimilated to shadow banks
or systemic institutions. More recently, we observe a refocusing on instruments
and activities. These two approaches go together when measuring the shadow
banking.
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12.3.2 Measuring the shadow banking

The FSB (2015e) define two measures of the shadow banking system. The
broad measure considers all the assets of non-bank financial institutions, while
the narrow measure only considers the assets that are part of the credit inter-
mediation chain.

12.3.2.1 The broad measure

The broad measure corresponds to the amount of financial assets held by
insurance companies, pension funds and other financial intermediaries (OFI).
OFIs comprise all financial institutions that are not central banks (CB), banks,
insurance companies (IC), pension funds (PF), public financial institutions
(PFI) or financial auxiliaries (FA). This broad measure is also called the
MUNFI34 measure of assets. Table 12.12 shows the amount of assets man-
aged by financial institutions and listed in the 2015 monitoring exercise35.
Assets rose from $126.6 tn in 2002 to $316.1 tn in 2014. This growth is ex-
plained by an increase in all financial sectors. In 2014, the MUNFI measure
is equal to $137.0 tn with the following repartition: $28.0 tn for insurance
companies (20.4%), $29.2 tn for pension funds (21.3%) and $79.8 tn for other
financial intermediaries (58.3%). The MUNFI measure is then comparable to
banks’ assets, which are equal to $142.2 tn in 2014.

TABLE 12.12: Assets of financial institutions (in $ tn)

Year CB Banks PFI IC PF OFI Total MUNFI
FA (in %)

2002 4.8 53.8 11.5 14.5 12.0 30.0 126.6 56.5 44.6%
2003 5.6 67.0 12.5 17.5 13.8 36.9 153.2 68.2 44.5%
2004 6.5 78.5 12.6 19.8 15.4 42.9 175.6 78.1 44.5%
2005 7.1 79.5 12.0 20.0 16.4 46.3 181.4 82.7 45.6%
2006 8.0 92.7 12.0 22.6 18.3 56.1 209.6 96.9 46.2%
2007 10.4 113.8 12.9 25.1 19.7 66.7 248.6 111.4 44.8%
2008 14.6 123.3 14.0 21.2 19.0 60.6 252.8 100.9 39.9%
2009 15.0 124.0 14.7 23.3 21.7 64.1 262.8 109.1 41.5%
2010 16.7 130.3 14.9 24.8 24.2 68.3 279.0 117.2 42.0%
2011 20.4 140.2 14.9 25.4 24.8 68.2 293.9 118.4 40.3%
2012 22.4 145.2 14.5 27.1 26.8 73.0 309.0 126.9 41.1%
2013 23.0 144.4 14.0 27.9 28.4 78.2 315.9 134.5 42.6%
2014 23.3 142.2 13.7 28.0 29.2 79.8 316.1 137.0 43.3%

Source: FSB (2015e), Shadow Banking Monitoring Dataset 2015.

34MUNFI is the acronym of “monitoring universe of non-bank financial intermediation”.
35This exercise covers 26 countries, including for instance BRICS, Japan, the Euro area,

the United Sates and the United Kingdom.
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Financial assets managed by OFIs are under the scrutiny of the FSB, which
has adopted the following classification: money market funds (MMF), finance
companies (FC), structured finance vehicles (SFV), hedge funds (HF), other
investment funds (OIF), broker-dealers (BD), real estate investment trusts
(REIT) and trust companies (TC). Table 12.13 gives the repartition of assets
by categories. We can now decompose the amount of $79.8 tn assets reached
in 2014 by category of OFIs. 39.8% of these assets concern other investment
funds, that is equity funds, fixed income funds and multi-asset funds. Broker-
dealers is an important category of OFIs as they represent 11.8% of assets.
It is followed by structured finance vehicles (6.8%) and money market funds
(5.8%). We also notice the low level of HF assets, which is due to the fact
that many hedge funds are not domiciliated in the list of 26 countries that
participated to the FSB report.

TABLE 12.13: Assets of OFIs (in $ tn)

Year MMF FC SFV HF OIF BD REIT TC Other
2002 3.1 2.4 2.4 0.0 5.2 3.2 0.1 0.1 13.4
2003 3.3 2.7 2.7 0.0 6.7 3.9 0.4 0.1 17.0
2004 3.4 2.9 3.3 0.0 8.1 4.7 0.5 0.1 19.9
2005 3.5 2.8 4.1 0.0 9.5 5.1 0.6 0.1 20.5
2006 4.0 3.0 5.0 0.0 11.6 5.8 0.8 0.1 25.8
2007 5.1 3.1 6.3 0.0 13.8 6.7 0.8 0.2 30.7
2008 5.9 3.7 6.1 0.2 15.2 9.2 0.7 0.1 19.4
2009 5.5 3.5 8.8 0.2 19.8 7.9 0.8 0.2 17.4
2010 4.7 3.7 7.4 0.2 22.5 8.6 1.4 0.7 19.1
2011 4.4 3.6 7.0 0.2 21.8 9.0 1.6 1.0 19.5
2012 4.4 3.4 6.5 0.3 25.5 9.2 1.8 1.5 20.5
2013 4.4 3.2 6.0 0.3 29.9 9.1 1.8 2.2 21.3
2014 4.6 3.1 5.4 0.5 31.8 9.4 1.9 2.7 20.4

Source: FSB (2015e), Shadow Banking Monitoring Dataset 2015.

The broad measure suffers from one major shortcoming, because it is an
entity-based measure and not an asset-based measure. It then includes both
shadow banking assets and other assets. This is particular true for equity as-
sets, which are not shadow banking assets36. In this context, the FSB has
developed more relevant measures, but with less participating countries. In
Figure 12.7, we have reported the credit assets calculated by the FSB for 11
countries37 and the Euro area. In 2014, the credit intermediation by banks
was equal to $77 tn. It has declined these last years, principally because of the

36This concerns for instance equity mutual funds and long/short equity hedge funds.
37They are Australia, Brazil, Chile, Hong Kong, India, Indonesia, Japan, Mexico, Switzer-

land, United Kingdom and United States.
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Euro area and Japan. At the same time, credit assets by insurance companies
and pension funds (ICPF) were equal to $19 tn, whereas the credit interme-
diation by OFIs peaked at $29 tn. The FSB proposes a sub-decomposition
of these credit assets by reporting the lending assets (loans and receivables).
The difference between credit and lending assets is essentially composed of
investments in debt securities. This decomposition is shown in Figure 12.7.
We notice that loans are the main component of banks’ credit assets (76.8%),
whereas they represent a small part of the credit intermediation by ICPFs
(12%). For OFIs, loans explain 41% of credit assets, but we observe differ-
ences between OFIs’ sectors. Finance companies and broker-dealers are the
main contributors of lending by OFIs.

FIGURE 12.7: Credit assets (in $ tn)

Source: FSB (2015e), Shadow Banking Monitoring Dataset 2015.

12.3.2.2 The narrow measure

Since this year, the FSB produces a more relevant measure of the shadow
banking system, which is called the narrow measure. The narrow measure is
based on the classification of the shadow banking system by economic func-
tions given in Table 12.14.

The first economic function is related to redemption risks and concerns
forced liquidations in an hostile environment. For instance, the lack of liquid-
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TABLE 12.14: Classification of the shadow banking system by economic
functions
Economic Definition Typical entity typesFunction

EF1
Management of collective in-
vestment vehicles with features
that are susceptible to runs

Fixed-income funds, mixed
funds, credit hedge funds,
real estate funds

EF2 Loan provision that is depen-
dent on short-term funding

Finance companies, leas-
ing, factoring and consumer
credit companies

EF3

Intermediation of market ac-
tivities that is dependent on
short-term funding or on se-
cured funding of client assets

Broker-dealers

EF4 Facilitation of credit creation
Credit insurance compa-
nies, financial guarantors,
monolines

EF5
Securitization-based credit in-
termediation and funding of fi-
nancial entities

Securitization vehicles

Source: FSB (2015e), Shadow Banking Monitoring Dataset 2015.

ity of some fixed-income instruments implies a premium for the first investors
who unwind their positions on money market and bond funds. In this case,
one can observe a run on such funds exactly like a bank run because investors
lose confidence in such products and do not want to be the lasts to move.
Run risk can then be transmitted to the entire asset class. This risk mainly
concerns collective investment vehicles, whose underlying assets face liquidity
issues (fixed income, real estate). The second and fourth economic functions
concern lending and credit that are conducted outside of the banking system.
The third economic function is related to market intermediation on short-term
funding. This includes securities broking services for market making activities
and prime brokerage services to hedge funds. Finally, the last economic func-
tion corresponds to credit securitization.

The FSB uses these five economic functions in order to calculate the narrow
measure defined in Figure 12.8. They consider that pension funds and insur-
ance companies are not participating to the narrow shadow banking system
except credit insurance companies. Nevertheless, this last category represents
less than $200 bn, implying that the narrow measure concerns principally
OFIs. Each OFIs is classified or not among the five economic functions by the
FSB. For instance, equity funds, closed-end funds without leverage and equity
REITs are excluded from the shadow banking estimate. Finally, the FSB also
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removes entities that are subsidiaries of a banking group and consolidated at
the group level for prudential purposes38.'

&

$

%

Narrow measure
=

Broad measure
−

Pension funds
−

Insurance companies
+

Credit insurance companies
−

OFis that are not classified into the five economic functions
−

OFIs that are consolidated into a banking group for prudential purposes

FIGURE 12.8: Calculation of the shadow banking narrow measure

In Table 12.15, we report the size of the narrow shadow banking and
compare it with assets of banks and OFIs. The narrow measure represents
53% of total assets managed by OFIs39. These shadow banking assets are
located in developed countries, in particular in the United States, United
Kingdom, Ireland, Germany, Japan and France (see Figure 12.9). If we analyze
the assets with respect to economic functions, EF1 and EF3 represent 60% and
11% of the assets, meaning that the shadow banking system involves in the
first instance mutual funds that are exposed to run risks and broker-dealers
activities.

TABLE 12.15: Size of the narrow shadow banking (in $ tn)

Year 2010 2011 2012 2013 2014
Banks 121.2 131.0 136.5 136.7 135.1
OFIs 58.2 58.8 62.8 66.8 68.1
Shadow banking 31.3 31.8 33.8 34.8 35.9

Source: FSB (2015e) & author’s calculation.

The FSB (2015e) provides also network measures between the banking
system and OFIs. For that, it estimates the aggregate balance sheet bilateral
exposure between the two sectors by considering netting exposures within
banking groups that are prudentially consolidated:

38This category represents almost 15% of OFIs’ assets.
39There is a discrepancy between the numbers calculated in the narrow measure and the

broad measure. This is explained by the fact that the Euro area is replaced by a set of 6
countries (France, Germany, Ireland, Italy, Netherlands and Spain) to define the narrow
shadow banking, because data are not available at the Euro area level. In particular, data
from Luxembourg are missing, which has a significant impact.
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39.7%

United States

11.4%

United Kingdom

7.7%

China
7.6%

Ireland
7.2%

Germany

6.8%

Japan

4.4%

France

2.8%

Canada

12.4%

Others

FIGURE 12.9: Breakdown by country of shadow banking assets (2014)

• Assets of banks to OFIs includes loans to institutions, fixed-income se-
curities, reverse repos and investment in money market funds and other
investment funds.

• Liabilities of banks to OFIs consists of uninsured bank deposits (e.g.
certificates of deposit, notes and commercial paper), reverse repos and
other short-term debt instruments.

Linkages between banks and OFIs are represented in Figure 12.10. These
linkages measure the interconnectedness between a set i ∈ I of banks and a set
j ∈ J of OFIs. Let ABanki and AOFIj be the total amount of assets managed
by Bank i and OFI j. We note ABanki→OFIj and LBanki→OFIj the assets and
liabilities of Bank i to OFI j, and AOFIj→Banki and LOFIj→Banki the assets
and liabilities of OFI j to Bank i. By construction, we have ABanki→OFIj =
LOFIj→Banki and LBanki→OFIj = AOFIj→Banki . In the bottom panel, we have
represented the linkage from the bank’s perspective. In this case, the credit
and funding risks of Bank i are equal to:

R(credit)
Banki

=
ABanki→OFIs

ABanki

and:
R(funding)

Banki
=
LBanki→OFIs

ABanki

where the aggregate measures are equal to ABanki→OFIs =
∑
j∈J ABanki→OFIj
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and LBanki→OFIs =
∑
j∈J LBanki→OFIj . In the same way, we can calculate the

interconnectedness from the OFI’s viewpoint as shown in the top panel. As
above, we define the credit and funding risks of OFI j in the following way:

R(credit)
OFIj

=
AOFIj→Banks

AOFIj

and:
R(funding)

OFIj
=
LOFIj→Banks

AOFIj

withAOFIj→Banks =
∑
i∈I AOFIj→Banki and LOFIj→Banks =

∑
i∈I LOFIj→Banki .

Using a subset of banks and OFIs, the FSB (2015e) found the following aver-
age interconnectedness ratios at the end of 2014:

Ratio R(credit)
Banki

R(funding)
Banki

R(credit)
OFIj

R(funding)
OFIj

Average 6.5% 8.1% 9.6% 7.9%

This means that 8.1% of bank’s funding depends on the shadow banking
system, while the credit risk of banks to OFIs is lower and equal to 6.5% of
bank’s assets. We also notice that about 8% of OFIs’ assets are provided by
banks, while investments of banks into OFIs reaches 9.6%. These figures give
an overview of the linkages between banking and OFIs sectors. In practice, the
interconnectedness is stronger because these ratios were calculated by netting
exposures within banking groups. It is obvious that linkages are higher in
these entities.

Banki OFIs

R(credit)
Banki

Bank’s credit risk

Bank’s funding risk

R(funding)
Banki

Banks OFIj

R(credit)
OFIj

OFI’s funding risk

OFI’s credit risk
R(credit)

OFIj

FIGURE 12.10: Interconnectedness between banks and OFIs
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12.3.3 Regulatory developments of shadow banking

The road map for regulating shadow banking, which is presented in FSB
(2013), focuses on four key principles:

• measurement and analysis of the shadow banking;

• mitigation of interconnectedness risk between banks and shadow bank-
ing entities;

• reduction of the run risk posed by money market funds;

• and improvement of transparency in securitization and more generally
in complex shadow banking activities.

12.3.3.1 Data gaps

As seen in the previous section, analyzing the shadow banking system is
a big challenge, because it is extremely difficult to measure it. In order to
address this issue, FSB and IMF are in charge of the implementation of the
G-20 data gaps initiative (DGI). DGI is not specific to shadow banking, but
is a more ambitious program for monitoring the systemic risk of the global
financial system40. However, it is obvious that shadow banking begin to be an
important component of DGI. This concerns in particular short-term debt in-
struments, bonds, securitization and repo markets. Trade repositories, which
collect data at the transaction level, complete regulatory reportings to under-
stand shadow banking. They already exist for some OTC instruments in EU
and US, but they will certainly be expanded to other markets (e.g. collateral-
ized transactions). Simultaneously, supervisory authorities have strengthened
regulatory reportings. However, the level of transparency in the shadow bank-
ing had still not reach this in banks. Some shadow banking sectors, in partic-
ular asset management and pension funds, should then expect new reporting
requirements.

12.3.3.2 Mitigation of interconnectedness risk

The BCBS (2013c) has introduced new capital requirements for banks’
equity investments in funds that are held in the banking book. They concern
investment funds, mutual funds, hedge funds and private equity funds. The
framework includes three methods to calculate the capital charge: the fall-
back approach (FBA), the mandate-based approach (MBA) and the look-
through approach (LTA). In this latter approach, the bank determines the
risk-weighted assets of the underlying exposures of the fund. This approach
is less conservative than the two others, but requires the full transparency on
the portfolio holdings. Under the fall-back approach, the risk weight is equal

40For instance, DGI concerns financial soundness indicators (FSI), CDS and securities
statistics, banking statistics, public sector debt, real estate prices, etc.
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to 1 250% whatever the risk of the fund. According to the BCBS (2013c),
the hierarchy in terms of risk sensitivity between the three approaches was
introduced to promote “due diligence by banks and transparent reporting by
the funds in which they invest”. This framework had a significant impact on
investment policy of banks and has reduced investments in equity funds and
hedge funds.

The BCBS (2014c) has developed new standards for measuring and con-
trolling large exposures to single counterparties. This concerns different levels
of aggregation from the legal entity to consolidated groups. The large expo-
sures framework is applicable to all international banks, and implies that the
exposure of a bank to a consolidated group must be lower than 25% of the
bank capital. This figure is reduced to 15% for systemic banks. This frame-
work penalizes then banking groups, which have shadow banking activities
(insurance, asset management, brokerage, etc.).

Remark 54 There are some current proposals to limit exposures to shadow
banking entities. For instance, the EBA issued a consultation paper in March
2015 and proposed that each bank must identify, monitor and control its indi-
vidual exposures to all money market funds, alternative investment funds that
fall under the AIFM directive and unregulated funds. In this proposal, UCITS
non MMFs (including bond, equity and mixed funds) are then excluded from
this shadow banking framework.

12.3.3.3 Money market funds

Money market funds are under the scrutiny of regulatory authorities since
the September 2008 run in the United States. The International Organization
of Securities Commissions (2012a) recalled that the systemic risk of these
funds is explained by three factors:

1. the illusory perception that MMFs don’t have market and credit risks
and benefit from capital protection;

2. the first mover advantage, which is pervasive during periods of market
distress;

3. and the discrepancy between the published NAV and the asset value.

In order to mitigate these risks, the IOSCO (2012a) proposed several recom-
mendations concerning the management of MMFs. In particular, they should
be explicitly defined, investment universe should be restricted to high quality
money market and low-duration fixed-income instruments, and they should be
priced with the fair value approach. Moreover, MMFs that maintain a stable
NAV (e.g. 1$ per share) should be converted into floating NAV.

In September 2015, the IOSCO reviewed the implementation progress
made by 31 jurisdictions in adopting regulation and policies of MMFs. In
particular, this review concerns the five largest jurisdictions (U.S., Ireland,
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China, France and Luxembourg), which together account for 90% of global
assets under management in MMFs. It appears that only the U.S. reported
having final implementation measures in all recommendations, while China
and Europe are in the process of finalizing relevant reforms.

In July 2014, the U.S. Securities and Exchange Commission adopted final
rules for the reform of MMFs. In particular, institutional MMFs will be re-
quired to trade at floating NAV. Moreover, all MMFs may impose liquidity
fees and redemption gates during periods of stress. In Europe, a proposal for
the regulation on MMFs is still in discussion. In China, two consultation pa-
pers regarding MMFs have been issued in May 2015. They propose to redefine
the investment universe, improve the liquidity management and introduce new
rules on valuation practices.

12.3.3.4 Complex shadow banking activities

We list here some supervisory initiatives related to some shadow banking
activities:

• In 2011, the European Union has adopted the Alternative Investment
Fund Managers Directive (AIFM), which complements the UCITS di-
rective for asset managers and applies to hedge fund managers, private
equity fund managers and real estate fund managers. In particular, it
imposes reporting requirements and defines the AIFM passport.

• In a similar way to MMFs, the IOSCO (2012) published recommenda-
tions to improve incentive alignments in securitization, in particular by
including issuer risk retention.

• According to IMF (2014), Nomura and Daiwa, which are the two largest
securities brokerage in Japan, are now subject to Basel III capital re-
quirements and bank-like prudential supervision.

• New regulation proposals on securities financing transactions (SFT)
have been done by the European Commission. They concern report-
ing, transparency and collateral reuse of SFT activities (repo market,
securities lending).

These examples show that the regulation of the shadow banking is in progress
and non-bank financial institutions should expect to be better controlled in
the future.

12.4 Exercises
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Chapter 15
Copulas and Dependence

One of the main challenges in risk management is the aggregation of individ-
ual risks. This problem can be easily solved or at least move the issue aside by
assuming that the random variables modeling individual risks are independent
or are only dependent by means of a common factor. The problem becomes
much more involved when one wants to model fully dependent random vari-
ables. Again a classic solution is to assume that the vector of individual risks
follows a multivariate Normal distribution. However, all risks are not likely to
be well described by a Gaussian random vector, and the Normal distribution
may fail to catch some features of the dependence between individual risks.

Copula functions are a statistical tool to solve the previous issue. A cop-
ula function is nothing else but the joint distribution of a vector of uniform
random variables. Since it is always possible to map any random vector into a
vector of uniform random variables, we are able to split the marginals and the
dependence between the random variables. Therefore, a copula function rep-
resents the statistical dependence between random variables, and generalizes
the concept of correlation when the random vector is not Gaussian.

15.1 Canonical representation of multivariate distribu-
tions

The concept of copula has been introduced by Sklar in 1959. During a
long time, only a small number of people have used copula functions, more
in the field of mathematics than this of statistics. The publication of Genest
and MacKay (1986b) in the American Statistician marks a breakdown and
opens areas of study in empirical modeling, statistics and econometrics. In
what follows, we intensively use the materials developed in the books of Joe
(1997) and Nelsen (2006).

15.1.1 Sklar’s theorem

Nelsen (2006) defines a bi-dimensional copula (or a 2-copula) as a function
C which satisfies the following properties:

359
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1. Dom C = [0, 1]× [0, 1];

2. C (0, u) = C (u, 0) = 0 and C (1, u) = C (u, 1) = u for all u in [0, 1];

3. C is 2-increasing:

C (v1, v2)−C (v1, u2)−C (u1, v2) + C (u1, u2) ≥ 0

for all (u1, u2) ∈ [0, 1]
2, (v1, v2) ∈ [0, 1]

2 such that 0 ≤ u1 ≤ v1 ≤ 1 and
0 ≤ u2 ≤ v2 ≤ 1.

This definition means that C is a cumulative distribution function with uni-
form marginals:

C (u1, u2) = Pr {U1 ≤ u1, U2 ≤ u2}
where U1 and U2 are two uniform random variables.

Example 51 Let us consider the function C⊥ (u1, u2) = u1u2. We have
C⊥ (0, u) = C⊥ (u, 0) = 0 and C⊥ (1, u) = C⊥ (u, 1) = u. When v2 − u2 ≥ 0
and v1 ≥ u1, it follows that v1 (v2 − u2) ≥ u1 (v2 − u2) and v1v2 + u1u2 −
u1v2 − v1u2 ≥ 0. We deduce that C⊥ is a copula function. It is called the
product copula.

Let F1 and F2 be any two univariate distributions. It is obvious that
F (x1, x2) = C (F1 (x1) ,F2 (x2)) is a probability distribution with marginals
F1 and F2. Indeed, ui = Fi (xi) defines a uniform transformation (ui ∈ [0, 1]).
Moreover, we verify that C (F1 (x1) ,F2 (∞)) = C (F1 (x1) , 1) = F1 (x1).
Copulas are then a powerful tool to build a multivariate probability distri-
bution when the marginals are given. Conversely, Sklar proved in 1959 that
any bivariate distribution F admits such a representation:

F (x1, x2) = C (F1 (x1) ,F2 (x2)) (15.1)

and that the copula C is unique provided the marginals are continuous. This
result is important, because we can associate to each bivariate distribution
a copula function. We then obtain a canonical representation of a bivariate
probability distribution: on one side, we have the marginals or the univariate
directions F1 and F2; on the other side, we have the copula C that links these
marginals and gives the dependence between the unidimensional directions.

Example 52 The Gumbel logistic distribution is the function F (x1, x2) =

(1 + e−x1 + e−x2)
−1 defined on R2. We notice that the marginals are F1 (x1) ≡

F (x1,∞) = (1 + e−x1)
−1 and F2 (x2) ≡ (1 + e−x2)

−1. The quantile functions
are then F−1

1 (u1) = lnu1− ln (1− u1) and F−1
2 (u2) = lnu2− ln (1− u2). We

finally deduce that:

C (u1, u2) = F
(
F−1

1 (u1) ,F−1
2 (u2)

)
=

u1u2

u1 + u2 − u1u2

is the Gumbel logistic copula.
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15.1.2 Expression of the copula density

If the joint distribution function F (x1, x2) is absolutely continuous, we
obtain:

f (x1, x2) = ∂1,2 F (x1, x2)

= ∂1,2 C (F1 (x1) ,F2 (x2))

= c (F1 (x1) ,F2 (x2))× f1 (x1)× f2 (x2) (15.2)

where f (x1, x2) is the joint probability density function, f1 and f2 are the
marginal densities and c is the copula density:

c (u1, u2) = ∂1,2 C (u1, u2)

We notice that the condition C (v1, v2)−C (v1, u2)−C (u1, v2)+C (u1, u2) ≥ 0
is then equivalent to ∂1,2 C (u1, u2) ≥ 0 when the copula density exists.

Example 53 In the case of the Gumbel logistic copula, we obtain c (u1, u2) =

2u1u2/ (u1 + u2 − u1u2)
3. We easily verify the 2-increasing property.

From Equation (15.2), we deduce that:

c (u1, u2) =
f
(
F−1

1 (u1) ,F−1
2 (u2)

)
f1

(
F−1

1 (u1)
)
× f2

(
F−1

2 (u2)
) (15.3)

We obtain a second canonical representation based on density functions. For
some copulas, there is no explicit analytical formula. This is the case of the
normal copula, which is equal to C (u1, u2; ρ) = Φ

(
Φ−1 (u1) ,Φ−1 (u2) ; ρ

)
.

Using Equation (15.3), we can however characterize its density function:

c (u1, u2; ρ) =
2π
(
1− ρ2

)−1/2
exp

(
− 1

2(1−ρ2)

(
x2

1 + x2
2 − 2ρx1x2

))
(2π)

−1/2
exp

(
− 1

2x
2
1

)
× (2π)

−1/2
exp

(
− 1

2x
2
2

)
=

1√
1− ρ2

exp

(
−1

2

(
x2

1 + x2
2 − 2ρx1x2

)
(1− ρ2)

+
1

2

(
x2

1 + x2
2

))

where x1 = F−1
1 (u1) and x2 = F−1

2 (u2). It is then easy to generate bivariate
non-normal distributions.

Example 54 In Figure 15.1, we have built a bivariate probability distribution
by considering that the marginals are an inverse Gaussian distribution and a
Beta distribution. The copula function corresponds to the normal copula such
that its Kendall’s tau is equal to 50%.
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FIGURE 15.1: Example of a bivariate probability distribution with given
marginals

15.1.3 Fréchet classes

The goal of Fréchet classes is to study of the structure of the class of
distribution with given marginals. These later can be unidimensional, multi-
dimensional or conditional. Let us consider the bivariate distribution functions
F12 and F23. The Fréchet class F (F12,F23) is the set of trivariate probabil-
ity distributions that are compatible with the two bivariate marginals F12

and F23. In these lecture notes, we restrict our focus on the Fréchet class
F (F1, . . . ,Fn) with univariate marginals.

15.1.3.1 The bivariate case

Let us first consider the bivariate case. The distribution function F be-
longs to the Fréchet class (F1,F2) and we note F ∈ F (F1,F2) if an only
if the margins of F are F1 and F2, meaning that F (x1,∞) = F1 (x1) and
F (∞, x2) = F2 (x2). Characterizing the Fréchet class F (F1,F2) is then equiv-
alent to find the set C of copula functions:

F (F1,F2) = {F : F (x1, x2) = C (F1 (x1) ,F2 (x2)) ,C ∈ C}

This problem is then not dependent of the marginals F1 and F2.
We can show that the extremal distribution functions F− and F+ of the
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Fréchet class F (F1,F2) are:

F− (x1, x2) = max (F1 (x1) + F2 (x2)− 1, 0)

and:
F+ (x1, x2) = min (F1 (x1) ,F2 (x2))

F− and F+ are called the Fréchet lower and upper bounds. We deduce that
the corresponding copula functions are:

C− (u1, u2) = max (u1 + u2 − 1, 0)

and:
C+ (u1, u2) = min (u1, u2)

Example 55 We consider the Fréchet class F (F1,F2) with F1 = F2 =
N (0, 1). We know that the bivariate normal distribution with correlation ρ be-
longs to F (F1,F2). Nevertheless, a lot of bivariate non-normal distributions
are also in this Fréchet class. For instance, this is the case of this probability
distribution:

F (x1, x2) =
Φ (x1) Φ (x2)

Φ (x1) + Φ (x2)− Φ (x1) Φ (x2)

We can also show that1:

F− (x1, x2) := Φ (x1, x2;−1) = max (Φ (x1) + Φ (x2)− 1, 0)

and:
F+ (x1, x2) := Φ (x1, x2; +1) = min (Φ (x1) ,Φ (x2))

Therefore, the bounds of the Fréchet class F (N (0, 1) ,N (0, 1)) correspond to
the bivariate normal distribution, whose correlation is respectively equal to −1
and +1.

15.1.3.2 The multivariate case

The extension of bivariate copulas to multivariate copulas is straightfor-
ward. Thus, the canonical decomposition of a multivariate distribution func-
tion is:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

We note CE the sub-copula of C such that arguments that are not in the set
E are equal to 1. For instance, with a dimension of 4, we have C12 (u, v) =
C (u, v, 1, 1) and C124 (u, v, w) = C (u, v, 1, w). Let us consider the 2-copulas

1We remind that:

Φ (x1, x2; ρ) =

∫ x1

−∞

∫ x2

−∞
φ (y1, y2; ρ) dy1 dy2



364 Lecture Notes on Risk Management & Financial Regulation

C1 and C2. It seems logical to build a copula of higher dimension with copulas
of lower dimensions. In fact, the function C1 (u1,C2 (u2, u3)) is not a copula
in most cases (Quesada Molina and Rodriguez Lallena, 1994). For instance,
we have:

C−
(
u1,C

− (u2, u3)
)

= max (u1 + max (u2 + u3 − 1, 0)− 1, 0)

= max (u1 + u2 + u3 − 2, 0)

= C− (u1, u2, u3)

However, the function C− (u1, u2, u3) is not a copula.
In the multivariate case, we define:

C− (u1, . . . , un) = max

(
n∑
i=1

ui − n+ 1, 0

)

and:
C+ (u1, . . . , un) = min (u1, . . . , un)

As discussed above, we can show that C+ is a copula, but C− does not belong
to the set C. Nevertheless, C− is the best-possible bound, meaning that for all
(u1, . . . , un) ∈ [0, 1]

n, there is a copula that coincide with C− (Nelsen, 2006).
This implies that F (F1, . . . ,Fn) has a minimal distribution function if and
only if max (

∑n
i=1 Fi (xi)− n+ 1, 0) is a probability distribution (Dall’Aglio,

1972).

15.1.3.3 Concordance ordering

Using the result of the previous paragraph, we have:

C− (u1, u2) ≤ C (u1, u2) ≤ C+ (u1, u2)

for all C ∈ C. For a given value α ∈ [0, 1], the level curves of C are then in
the triangle defined as follows:

{(u1, u2) : max (u1 + u2 − 1, 0) ≤ α,min (u1, u2) ≥ α}

An illustration is shown in Figure 15.2. In the multidimensional case, the
region becomes a n-volume.

We now introduce a stochastic ordering on copulas. Let C1 and C2 be
two copula functions. We say that the copula C1 is smaller than the copula
C2 and we note C1 ≺ C2 if we verify that C1 (u1, u2) ≤ C2 (u1, u2) for all
(u1, u2) ∈ [0, 1]

2. This stochastic ordering is called the concordance ordering
and may be viewed as the first order of the stochastic dominance on probability
distributions.

Example 56 This ordering is partial because we can not compare all the
copulas. Let us consider the cubic copula defined by C (u1, u2; θ) = u1u2 +
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FIGURE 15.2: The triangle region of the contour lines C (u1, u2) = α

θ [u(u− 1)(2u− 1)] [v(v − 1)(2v − 1)] where θ ∈ [−1, 2]. If we compare it to
the product copula C⊥, we have:

C

(
3

4
,

3

4
; 1

)
= 0.5712 ≥ C⊥

(
3

4
,

3

4

)
= 0.5625

but:
C

(
3

4
,

1

4
; 1

)
= 0.1787 ≤ C⊥

(
3

4
,

1

4

)
= 0.1875

Using the Fréchet bounds, we have always C− ≺ C⊥≺ C+. A copula
C has a positive quadrant dependence (PQD) if it satisfies the inequality
C⊥ ≺ C ≺ C+. In a similar way, C has a negative quadrant dependence
(NQD) if it satisfies the inequality C− ≺ C ≺ C⊥. As it is a partial ordering,
there exists copula functions C such that C � C⊥ and C ⊀ C⊥. A copula
function may then have a dependence structure that is neither positive or
negative. This is the case of the cubic copula given in the previous example.
In Figure 15.3, we report the cumulative distribution function (above panel)
and its contour lines (right panel) of the three copula functions C−, C⊥ and
C+, which plays an important role to understand the dependance between
unidimensional risks.

Let Cθ (u1, u2) = C (u1, u2; θ) be a family of copula functions that depends
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FIGURE 15.3: The three copula functions C−, C⊥ and C+

FIGURE 15.4: Concordance ordering of the Frank copula
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on the parameter θ. The copula family {Cθ} is totally ordered if, for all
θ2 ≥ θ1, Cθ2 � Cθ1 (positively ordered) or Cθ2 ≺ Cθ1 (negatively ordered).
For instance,the Frank copula defined by:

C (u1, u2; θ) = −1

θ
ln

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
with θ ∈ R is a positively ordered family (Figure 15.4).

Example 57 Let us consider the copula function Cθ = θC− + (1− θ) C+

where 0 ≤ θ ≤ 1. This copula is a convex sum of the extremal copulas C− and
C+. When θ2 ≥ θ1, we have:

Cθ2 (u1, u2) = θ2C
− (u1, u2) + (1− θ2) C+ (u1, u2)

= Cθ1 (u1, u2)− (θ2 − θ1)
(
C+ (u1, u2)−C− (u1, u2)

)
≤ Cθ1 (u1, u2)

We deduce that Cθ2 ≺ Cθ1 . This copula family is negatively ordered.

15.2 Copula functions and random vectors
Let X = (X1, X2) be a random vector with distribution F. We define the

copula of (X1, X2) by the copula of F:

F (x1, x2) = C 〈X1, X2〉 (F1 (x1) ,F2 (x2))

In what follows, we give the main results on the dependence of the random
vector X found in Deheuvels (1978), Schweizer and Wolff (1981), and Nelsen
(2006).

15.2.1 Countermonotonicity, comonotonicity and scale in-
variance property

We give here a probabilistic interpretation of the three copula functions
C−, C⊥ and C+:

• X1 and X2 are countermonotonic – or C 〈X1, X2〉 = C− – if there exists
a random variable X such that X1 = f1 (X) and X2 = f2 (X) where f1

and f2 are respectively decreasing and increasing functions2;

• X1 and X2 are independent if the dependence function is the product
copula C⊥;

2We also have X2 = f (X1) where f = f2 ◦ f−1
1 is a decreasing function.
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• X1 are X2 are comonotonic – or C 〈X1, X2〉 = C+ – if there exists a
random variable X such that X1 = f1 (X) and X2 = f2 (X) where f1

and f2 are both increasing functions3.

Let us consider a uniform random vector (U1, U2). We have U2 = 1 − U1

when C 〈X1, X2〉 = C− and U2 = U1 when C 〈X1, X2〉 = C+. In the case
of a standardized Gaussian random vector, we obtain X2 = −X1 when
C 〈X1, X2〉 = C− and X2 = X1 when C 〈X1, X2〉 = C+. If the marginals are
log-normal, it follows that X2 = X−1

1 when C 〈X1, X2〉 = C− and X2 = X1

when C 〈X1, X2〉 = C+. For these three examples, we verify that X2 is a de-
creasing (resp. increasing) function of X1 if the copula function C 〈X1, X2〉 is
C− (resp. C+). The concepts of counter- and comonotonicity concepts gener-
alize the cases where the linear correlation of a Gaussian vector is equal to −1
or +1. Indeed, C− and C+ define respectively perfect negative and positive
dependence.

We now give one of the most important theorem on copulas. Let (X1, X2)
be a random vectors, whose copula is C 〈X1, X2〉. If h1 and h2 are two in-
creasing on ImX1 and ImX2, then we have:

C 〈h1 (X1) , h2 (X2)〉 = C 〈X1, X2〉

This means that copula functions are invariant under strictly increasing
transformations of the random variables. To prove this theorem, we note
F and G the probability distributions of the random vectors (X1, X2) and
(Y1, Y2) = (h1 (X1) , h2 (X2)). The marginals of G are:

G1 (y1) = Pr {Y1 ≤ y1}
= Pr {h1 (X1) ≤ y1}
= Pr

{
X1 ≤ h−1

1 (y1)
}

(because h1 is strictly increasing)

= F1

(
h−1

1 (y1)
)

and G2 (y2) = F2

(
h−1

2 (y2)
)
. We deduce that G−1

1 (u1) = h1

(
F−1

1 (u1)
)
and

G−1
2 (u2) = h2

(
F−1

2 (u2)
)
. By definition, we have:

C 〈Y1, Y2〉 (u1, u2) = G
(
G−1

1 (u1) ,G−1
2 (u2)

)
Moreover, it follows that:

G
(
G−1

1 (u1) ,G−1
2 (u2)

)
= Pr

{
Y1 ≤ G−1

1 (u1) , Y2 ≤ G−1
2 (u2)

}
= Pr

{
h1 (X1) ≤ G−1

1 (u1) , h2 (X2) ≤ G−1
2 (u2)

}
= Pr

{
X1 ≤ h−1

1

(
G−1

1 (u1)
)
, X2 ≤ h−1

2

(
G−1

2 (u2)
)}

= Pr
{
X1 ≤ F−1

1 (u1) , X2 ≤ F−1
2 (u2)

}
= F

(
F−1

1 (u1) ,F−1
2 (u2)

)
3In this case, X2 = f (X1) where f = f2 ◦ f−1

1 is an increasing function.
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Because we have C 〈X1, X2〉 (u1, u2) = F
(
F−1

1 (u1) ,F−1
2 (u2)

)
, we deduce

that C 〈Y1, Y2〉 = C 〈X1, X2〉.

Example 58 If X1 and X2 are two positive random variables, the previous
theorem implies that:

C 〈X1, X2〉 = C 〈lnX1, X2〉
= C 〈lnX1, lnX2〉
= C 〈X1, expX2〉

= C
〈√

X1, expX2

〉
Applying an increasing transformation does not change the copula function,
only the marginals. Thus, the copula of the multivariate log-normal distribu-
tion is the same than the copula of the multivariate normal distribution.

The scale invariance property is perhaps not surprising if we consider the
canonical decomposition of the bivariate probability distribution. Indeed, the
copula C 〈U1, U2〉 is equal to the copula C 〈X1, X2〉 where U1 = F1 (X1) and
U2 = F2 (X2). In some sense, Sklar’s theorem is an application of the scale
invariance property by considering h1 (x1) = F1 (x1) and h2 (x2) = F2 (x2).

Example 59 We assume that X1 ∼ N
(
µ1, σ

2
1

)
and X2 ∼ N

(
µ2, σ

2
2

)
. If the

copula of (X1, X2) is C−, we have U2 = 1− U1. This implies that:

Φ

(
X2 − µ2

σ2

)
= 1− Φ

(
X1 − µ1

σ1

)
= Φ

(
−X1 − µ1

σ1

)
We deduce that X1 and X2 are countermonotonic if:

X2 = µ2 −
σ2

σ1
(X1 − µ1)

By applying the same reasoning to the copula function C+, we show that X1

and X2 are comonotonic if:

X2 = µ2 +
σ2

σ1
(X1 − µ1)

We now consider the log-normal random variables Y1 = exp (X1) and Y2 =
exp (X2). For the countermonotonicity case, we obtain:

lnY2 = µ2 −
σ2

σ1
(lnY1 − µ1)

or:
Y2 = eµ2+

σ2
σ1
µ1Y

−σ2/σ1

1
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For the comonotonicity case, the relationship becomes:

Y2 = eµ2−σ2
σ1
µ1Y

σ2/σ1

1

If we assume that µ1 = µ2 and σ1 = σ2, the log-normal random variables Y1

and Y2 are countermonotonic if Y2 = Y −1
1 and comonotonic if Y2 = Y1.

15.2.2 Dependence measures

We can interpret the copula function C 〈X1, X2〉 as a standardization of
the joint distribution after eliminating the effects of marginals . Indeed, it
is a comprehensive statistic of the dependence function between X1 and X2.
Therefore, a non-comprehensive statistic will be a dependence measure if it
can be expressed using C 〈X1, X2〉.

15.2.2.1 Concordance measures

Following Nelsen (2006), a numeric measure m of association between X1

and X2 is a measure if concordance if it satisfies the following properties:

1. −1 = m 〈X,−X〉 ≤ m 〈C〉 ≤ m 〈X,X〉 = 1;

2. m
〈
C⊥
〉

= 0;

3. m 〈−X1, X2〉 = m 〈X1,−X2〉 = −m 〈X1, X2〉;

4. if C1 ≺ C2, then m 〈C1〉 ≤ m 〈C2〉;

Using this last property, we have:

C ≺ C⊥ =⇒ m 〈C〉 < 0

and:
C � C⊥ =⇒ m 〈C〉 > 0

The concordance measure can then be viewed as a generalization of the linear
correlation when the dependence function is not normal. Indeed, a positive
quadrant dependence (PQD) copula will have a positive concordance measure
whereas a negative quadrant dependence (NQD) copula will have a negative
concordance measure. Moreover, the bounds −1 and +1 are reached when the
copula function is countermonotonic and comonotonic.

Among the several concordance measures, we find Kendall’s tau and
Spearman’s rho, which play an important role in nonparametric statis-
tics. Let us consider a sample of n observations {(x1, y1) , . . . , (xn, yn)}
of the random vector (X,Y ). Kendall’s tau is the probability of concor-
dance – (Xi −Xj) (Yi − Yj) > 0 – minus the probability of discordance –
(Xi −Xj) (Yi − Yj) < 0:

τ = Pr {(Xi −Xj) (Yi − Yj) > 0} − Pr {(Xi −Xj) (Yi − Yj) < 0}
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Spearman’s rho is the linear correlation of the rank statistics (Xi:n, Yi:n). We
can also show that Spearman’s rho has the following expression

% =
cov (FX (X) ,FY (Y ))

σ (FX (X))σ (FY (Y ))

Schweizer and Wolff (1981) showed that Kendall’s tau and Spearman’s rho
are concordance measures and have the following expressions:

τ = 4

∫∫
[0,1]2

C (u1, u2) dC (u1, u2)− 1

% = 12

∫∫
[0,1]2

u1u2 dC (u1, u2)− 3

From a numerical point of view, the following formulas should be preferred
(Nelsen, 2006):

τ = 1− 4

∫∫
[0,1]2

∂u1
C (u1, u2) ∂u2

C (u1, u2) du1 du2

% = 12

∫∫
[0,1]2

C (u1, u2) du1 du2 − 3

For some copulas, we have analytical formulas. For instance, we have:

Copula % τ

Normal 6π−1 arc sin (ρ/2) 2π−1 arc sin (ρ)
Gumbel X (θ − 1) /θ
FGM θ/3 2θ/9
Frank 1− 12θ−1 (D1 (θ)−D2 (θ)) 1− 4θ−1 (1−D1 (θ))

where Dk (x) is the Debye function. The Gumbel (or Gumbel-Hougaard) cop-
ula is equal to:

C (u1, u2; θ) = exp

(
−
[
(− lnu1)

θ
+ (− lnu2)

θ
]1/θ)

for θ ≥ 1, whereas the expression of the Farlie-Gumbel-Morgenstern (or FGM)
copula is:

C (u1, u2; θ) = u1u2 (1 + θ (1− u1) (1− u2))

for −1 ≤ θ ≤ 1.
For illustration, we report in Figures 15.5, 15.6 and 15.7 the level curves

of several density functions built with normal, Frank and Gumbel copulas.
In order to compare them, the parameter of each copula is calibrated such
that Kendall’s tau is equal to 50%. This means that these 12 distributions
functions have the same dependence with respect to Kendall’s tau. However,
the dependence is different from one figure to another, because their copula
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FIGURE 15.5: Contour lines of bivariate densities (normal copula)

FIGURE 15.6: Contour lines of bivariate densities (Frank copula)
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FIGURE 15.7: Contour lines of bivariate densities (Gumbel copula)

function is not the same. This is why Kendall’s tau is not an exhaustive
statistic of the dependence between two random variables.

We could build bivariate probability distributions, which are even less com-
parable. Indeed, the set of these three copula families (normal, Frank and
Gumbel) is very small compared to the set C of copulas. However, there exists
other dependence functions that are very far from the previous copulas. For
instance, we consider the region B (τ, %) defined by:

(τ, %) ∈ B (τ, %)⇔
{

(3τ − 1) /2 ≤ % ≤
(
1 + 2τ − τ2

)
/2 if τ ≥ 0(

τ2 + 2τ − 1
)
/2 ≤ % ≤ (1 + 3τ) /2 if τ ≤ 0

Nelsen (2006) shows that these bounds can not be improved and there is
always a copula function that corresponds to a point of the boundary B (τ, %).
In Figure 15.8 we report the bounds B (τ, %) and the area reached by 8 copula
families (normal, Plackett, Frank, Clayton, Gumbel, Galambos, Husler-Reiss,
FGM). These copulas covered a small surface of the τ−% region. These copula
families are then relatively similar if we consider these concordance measures.
Obtaining copulas that have a different behavior requires that the dependence
is not monotone4 on the whole domain [0, 1]

2.

4For instance, the dependence can be positive in one region and negative in another
region.
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FIGURE 15.8: Bounds of (τ, %) statistics

15.2.2.2 Linear correlation

We remind that the linear correlation (or Pearson’s correlation) is defined
as follows:

ρ 〈X1, X2〉 =
E [X1X2]− E [X1]E [X2]

σ (X1)σ (X2)

Tchen (1980) showed the following properties of this measure:

• if the dependence of the random vector (X1, X2) is the product copula
C⊥, then ρ 〈X1, X2〉 = 0;

• ρ is an increasing function with respect to the concordance measure:

C1 � C2 ⇒ ρ1 〈X1, X2〉 ≥ ρ2 〈X1, X2〉

• ρ 〈X1, X2〉 is bounded:

ρ− 〈X1, X2〉 ≤ ρ 〈X1, X2〉 ≤ ρ+ 〈X1, X2〉

and the bounds are reached for the Fréchet copulas C− and C+.

However, a concordance measure must satisfy m 〈C−〉 = −1 and m 〈C+〉 =
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+1. If we use the stochastic representation of Fréchet bounds, we have:

ρ− 〈X1, X2〉 = ρ+ 〈X1, X2〉 =
E [f1 (X) f2 (X)]− E [f1 (X)]E [f2 (X)]

σ (f1 (X))σ (f2 (X))

The solution of the equation ρ− 〈X1, X2〉 = −1 is f1 (x) = a1x + b1 and
f2 (x) = a2x + b2 where a1a2 < 0. For the equation ρ+ 〈X1, X2〉 = +1, the
condition becomes a1a2 > 0. Except for Gaussian random variables, there are
few probability distributions that can satisfy these conditions. Moreover, if
the linear correlation is a concordance measure, it is an invariant measure by
increasing transformations:

ρ 〈X1, X2〉 = ρ 〈f1 (X1) , f2 (X2)〉

Again, the solution of this equation is f1 (x) = a1x+ b1 and f2 (x) = a2x+ b2
where a1a2 > 0. We now have a better understanding why we say that this
dependence measure is linear. In summary, the copula function generalizes the
concept of linear correlation in a non-gaussian non-linear world.

Exercise 60 We consider the bivariate log-normal random vector (X1, X2)
where X1 ∼ LN

(
µ1, σ

2
1

)
, X2 ∼ LN

(
µ2, σ

2
2

)
and ρ = ρ 〈lnX1, lnX2〉.

We can show that:

E [Xp1

1 Xp2

2 ] = exp

(
p1µ1 + p2µ2 +

p2
1σ

2
1 + p2

2σ
2
2

2
+ p1p2ρσ1σ2

)
It follows that:

ρ 〈X1, X2〉 =
exp (ρσ1σ2)− 1√

exp (σ2
1)− 1×

√
exp (σ2

2)− 1

We deduce that ρ 〈X1, X2〉 ∈ [ρ−, ρ+], but the bounds are not necessarily −1
and +1. For instance, when we use the parameters σ1 = 1 and σ2 = 3, we
obtain the following results:

Copula ρ 〈X1, X2〉 τ 〈X1, X2〉 % 〈X1, X2〉
C− −0.008 −1.000 −1.000

ρ = −0.7 −0.007 −0.494 −0.683
C⊥ 0.000 0.000 0.000

ρ = 0.7 0.061 0.494 0.683
C+ 0.162 1.000 1.000

When the copula function is C−, the linear correlation takes a value close to
zero! In Figure 15.9, we show that the bounds ρ− and ρ+ of ρ 〈X1, X2〉 are not
necessarily −1 and +1. When the marginals are log-normal, the upper bound
ρ+ = +1 is reached only when σ1 = σ2 and the lower bound ρ− = −1 is never
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reached. This poses a problem to interpret the value of a correlation. Let us
consider two random vectors (X1, X2) and (Y1, Y2). What could we say about
the dependence function when ρ 〈X1, X2〉 ≥ ρ 〈Y1, Y2〉? The answer is nothing
if the marginals are not Gaussian. Indeed, we have seen previously that a
70% linear correlation between two Gaussian random vectors becomes a 6%
linear correlation if we apply an exponential transformation. However, the two
copulas of (X1, X2) and (Y1, Y2) are exactly the same. In fact, the drawback
of the linear correlation is that this measure depends on the marginals and
not only on the copula function.

FIGURE 15.9: Bounds of the linear correlation between two log-normal
random variables

15.2.2.3 Tail dependence

Contrary to concordance measures, tail dependence is a local measure that
characterizes the joint behavior of the random variables X1 and X2 at the
extreme points x− = inf {x : F (x) > 0} and x+ = sup {x : F (x) < 1}. Let C
be a copula function such that the following limit exists:

λ+ = lim
u→1−

1− 2u+ C (u, u)

1− u

We say that C has an upper tail dependence when λ+ ∈ (0, 1] and C has no
upper tail dependence when λ+ = 0 (Joe, 1997). For the lower tail dependence
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λ−, the limit becomes:

λ− = lim
u→0+

C (u, u)

u

We notice that λ+ and λ− can also be defined as follows:

λ+ = lim
u→1−

Pr {U2 > u | U1 > u}

and:
λ− = lim

u→0+
Pr {U2 < u | U1 < u}

To compute the upper tail dependence, we consider the joint survival func-
tion C̄ defined by:

C̄ (u1, u2) = Pr {U1 > u1, U2 > u2}
= 1− u1 − u2 + C (u1, u2)

The expression of the upper tail dependence is then:

λ+ = lim
u→1−

C̄ (u, u)

1− u

= − lim
u→1−

dC̄ (u, u)

du

= − lim
u→1−

(−2 + ∂1C (u, u) + ∂2C (u, u))

= lim
u→1−

(Pr {U2 > u | U1 = u}+ Pr {U1 > u | U2 = u})

By assuming that the copula is symmetric, we finally obtain:

λ+ = 2 lim
u→1−

Pr {U2 > u | U1 = u}

= 2− 2 lim
u→1−

Pr {U2 < u | U1 = u}

= 2− 2 lim
u→1−

C2|1 (u, u) (15.4)

In a similar way, we find that the lower tail dependence of a symmetric copula
is:

λ− = 2 lim
u→0+

C2|1 (u, u) (15.5)

For the copula functions C⊥ and C−, we have λ+ = λ− = 0. For
the copula C+, we obtain λ+ = λ− = 1. However, there exists copulas
such that λ+ 6= λ−. This is the case of the Gumbel copula C (u1, u2; θ) =

exp

(
−
[
(− lnu1)

θ
+ (− lnu2)

θ
]1/θ)

, because we have λ+ = 2 − 21/θ and

λ− = 0. The Gumbel copula has then a upper tail dependence, but no
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lower tail dependence. If we consider the Clayton copula C (u1, u2; θ) =(
u−θ1 + u−θ2 − 1

)−1/θ
, we obtain λ+ = 0 and λ− = 2−1/θ.

Coles et al. (1999) define the quantile-quantile dependence function as
follows:

λ+ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
It is the conditional probability that X2 is larger than the quantile F−1

2 (α)
given that X1 is larger than the quantile F−1

1 (α). We have:

λ+ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
=

Pr
{
X2 > F−1

2 (α) , X1 > F−1
1 (α)

}
Pr
{
X1 > F−1

1 (α)
}

=
1− Pr

{
X1 ≤ F−1

1 (α)
}
− Pr

{
X2 ≤ F−1

2 (α)
}

1− Pr
{
X1 ≤ F−1

1 (α)
} +

Pr
{
X2 ≤ F−1

2 (α) , X1 ≤ F−1
1 (α)

}
1− Pr {F1 (X1) ≤ α}

=
1− 2α+ C (α, α)

1− α

The tail dependence λ+ is then the limit of the conditional probability when
the confidence level α tends to 1. It is also the probability of one variable being
extreme given that the other is extreme. Because λ+ (α) is a probability, we
verify that λ+ ∈ [0, 1]. If the probability is zero, the extremes are independent.
If λ+ is equal to 1, the extremes are perfectly dependent. To illustrate the
measures5 λ+ (α) and λ− (α), we represent their values for the Gumbel and
Clayton copulas in Figure 15.10. The parameters are calibrated with respect
to Kendall’s tau.

Remark 55 We consider two portfolios, whose losses correspond to the ran-
dom variables L1 and L2 with probability distributions F1 and F2. The proba-
bility that the loss of the second portfolio is larger than its value-at-risk knowing
that the value-at-risk of the first portfolio is exceeded is exactly equal to the
quantile-quantile dependence measure λ+ (α):

λ (α) = Pr
{
L2 > F−1

2 (α) | L1 > F−1
1 (α)

}
= Pr {L2 > VaRα (L2) | L1 > VaRα (L1)}

5We have λ− (α) = Pr
{
X2 < F−1

2 (α) | X1 < F−1
1 (α)

}
and limα→0 λ− (α) = λ−.
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FIGURE 15.10: Quantile-quantile dependence measures λ+ (α) and λ− (α)

15.3 Parametric copula functions
In this section, we study the copula families, which are commonly used

in risk management. They are parametric copulas, which depends on a set of
parameters. Statistical inference, in particular parameter estimation, is devel-
oped in the next section.

15.3.1 Archimedean copulas

15.3.1.1 Definition

Genest and MacKay (1986b) define Archimedean copulas as follows:

C (u1, u2) =

{
ϕ−1 (ϕ (u1) + ϕ (u2)) if ϕ (u1) + ϕ (u2) ≤ ϕ (0)
0 otherwise

with ϕ a C2 function which satisfies ϕ (1) = 0, ϕ′ (u) < 0 and ϕ′′ (u) > 0 for all
u ∈ [0, 1]. ϕ (u) is called the generator of the copula function. If ϕ (0) =∞, the
generator is said to be strict. Genest and MacKay (1986a) link the construction
of Archimedean copulas to the independence of random variables. Indeed, by
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considering the multiplicative generator λ (u) = exp (−ϕ (u)), the authors
shows that:

C (u1, u2) = λ−1 (λ (u1)λ (u2))

This means that:

λ (Pr {U1 ≤ u1, U2 ≤ u2}) = λ (Pr {U1 ≤ u1})× λ (Pr {U2 ≤ u2})

In this case, the random variables (U1, U2) become independent when the scale
of probabilities has been transformed.

Example 61 If ϕ (u) = u−1 − 1, we have ϕ−1 (u) = (1 + u)
−1 and:

C (u1, u2) =
(
1 +

(
u−1

1 − 1 + u−1
2 − 1

))−1
=

u1u2

u1 + u2 − u1u2

The Gumbel logistic copula is then an Archimedean copula.

Example 62 The product copula C⊥ is Archimedean and the associated gen-
erator is ϕ (u) = − lnu. Concerning Fréchet copulas, only C− is Archimedean
with ϕ (u) = 1− u.

In Table 15.1, we provide another examples of Archimedean copulas6.

TABLE 15.1: Examples of Archimedean copula functions

Copula ϕ (u) C (u1, u2)

C⊥ − lnu u1u2

Clayton u−θ − 1
(
u−θ1 + u−θ2 − 1

)−1/θ

Frank − ln e−θu−1
e−θ−1

− 1
θ ln

(
1 +

(e−θu1−1)(e−θu2−1)
e−θ−1

)
Gumbel (− lnu)

θ
exp

(
−
(
ũθ1 + ũθ2

)1/θ)
Joe − ln

(
1− (1− u)

θ
)

1−
(
ūθ1 + ūθ2 − ūθ1ūθ2

)1/θ

15.3.1.2 Properties

Archimedean copulas plays an important role in statistics, because they
present many interesting properties, for example:

• C is symmetric, meaning that C (u1, u2) = C (u2, u1);

• C is associative, implying that C (u1,C (u1, u3)) = C (C (u1, u2) , u3) ;

• the diagonal section δ (u) = C (u, u) satisfies δ (u) < u for all u ∈ (0, 1);

6We use the notations ū = 1− u and ũ = − lnu.
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• if a copula C is associative and δ (u) < u for all u ∈ (0, 1), then C is
Archimedean.

Genest and MacKay (1986a) also showed that the expression of Kendall’s tau
is:

τ 〈C〉 = 1 + 4

∫ 1

0

ϕ (u)

ϕ′ (u)
du

whereas the copula density is:

c (u1, u2) = −ϕ
′′ (C (u1, u2))ϕ′ (u1)ϕ′ (u2)

[ϕ′ (C (u1, u2))]
3

Example 63 With the Clayton copula, we have ϕ (u) = u−θ−1 and ϕ′ (u) =
−θu−θ−1. We deduce that:

τ = 1 + 4

∫ 1

0

1− u−θ

θu−θ−1
du

=
θ

θ + 2

15.3.1.3 Two-parameter Archimedean copulas

Nelsen (2006) showed that if ϕ (t) is a strict generator, then we can build
two-parameter Archimedean copulas by considering the following generator:

ϕα,β (t) = (ϕ (tα))
β

where α > 0 and β > 1. For instance, if ϕ (t) = t−1−1, the two-parameter gen-
erator is ϕα,β (t) = (t−α − 1)

β . Therefore, the corresponding copula function
is defined by:

C (u1, u2) =

([(
u−α1 − 1

)β
+
(
u−α2 − 1

)β]1/β
+ 1

)−1/α

This is a generalization of the Clayton copula, which is obtained when the
parameter β is equal to 1.

15.3.1.4 Extension to the multivariate case

We can build multivariate Archimedean copulas in the following way:

C (u1, . . . , un) = ϕ−1 (ϕ (u1) + . . .+ ϕ (un))

However, C is a copula function if and only if the function ϕ−1 (u) is com-
pletely monotone (Nelsen, 2006):

(−1)
k dk

duk
ϕ−1 (u) ≥ 0 ∀ k ≥ 1
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For instance, the multivariate Gumbel copula is:

C (u1, . . . , un) = exp

(
−
(

(− lnu1)
θ

+ . . .+ (− lnun)
θ
)1/θ

)

The previous construction is related to an important class of multivariate
distributions, which are called frailty models (Oakes, 1989). Let F1, . . . ,Fn
be univariate distribution functions, and let G be an n-variate distribution
function with univariate marginals Gi, such that Ḡ (0, . . . , 0) = 1. We denote
by ψi the Laplace transform of Gi. Marshall and Olkin (1988) showed that
the function defined by:

F (x1, . . . , xn) =

∫
· · ·
∫

C
(
Ht1

1 (x1) , . . . ,Htn
n (xn)

)
dG (t1, . . . , tn)

is a multivariate probability distribution with marginals F1, . . . ,Fn if Hi (x) =
exp

(
−ψ−1

i (Fi (x))
)
. If we assume that the univariate distributions Gi are the

same and equal to G1, G is the upper Fréchet bound and C is the product
copula C⊥, the previous expression becomes:

F (x1, . . . , xn) =

∫ n∏
i=1

Ht1
i (xi) dG1 (t1)

=

∫
exp

(
−t1

n∑
i=1

ψ−1 (Fi (xi))

)
dG1 (t1)

= ψ
(
ψ−1 (F1 (x1)) + . . .+ ψ−1 (Fn (xn))

)
The corresponding copula is then given by:

C (u1, . . . , un) = ψ
(
ψ−1 (u1) + . . .+ ψ−1 (un)

)
This is a special case of Archimedean copulas where the generator ϕ is the
inverse of a Laplace transform. For instance, the Clayton copula is a frailty
copula where ψ (x) = (1 + θx)

−1/θ is the Laplace transform of a Gamma
random variate. The Gumbel-Hougaard copula is frailty too and we have
ψ (x) = exp

(
−x1/θ

)
. This is the Laplace transform of a positive stable distri-

bution.
For frailty copulas, Joe (1997) showed that upper and lower tail depen-

dence measures are given by:

λ+ = 2− 2 lim
x→0

ψ′ (2x)

ψ′ (x)

and:
λ− = 2 lim

x→∞

ψ′ (2x)

ψ′ (x)
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Exercise 64 In the case of the Clayton copula, the Laplace transform is
ψ (x) = (1 + θx)

−1/θ. We have:

ψ′ (2x)

ψ′ (x)
=

(1 + 2θx)
−1/θ−1

(1 + θx)
−1/θ−1

We deduce that:

λ+ = 2− 2 lim
x→0

(1 + 2θx)
−1/θ−1

(1 + θx)
−1/θ−1

= 2− 2

= 0

and:

λ− = 2 lim
x→∞

(1 + 2θx)
−1/θ−1

(1 + θx)
−1/θ−1

= 2× 2−1/θ−1

= 2−1/θ

15.3.2 Normal copula

The normal copula is the dependency function of the multivariate normal
distribution with a correlation matrix ρ:

C (u1, . . . , un; ρ) = Φn
(
Φ−1 (u1) , . . . ,Φ−1 (un) ; ρ

)
By using the canonical decomposition of the multivariate density function:

f (x1, . . . , xn) = c (F1 (x1) , . . . ,Fn (xn))

n∏
i=1

fi (xi)

We deduce that the density of the normal copula is:

c (u1, . . . , un, ; ρ) =
1

|ρ|
1
2

exp

(
−1

2
x>
(
ρ−1 − In

)
x

)
where xi = Φ−1 (ui). In the bivariate case, we obtain7:

c (u1, u2; ρ) =
1√

1− ρ2
exp

(
−x

2
1 + x2

2 − 2ρx1x2

2 (1− ρ2)
+
x2

1 + x2
2

2

)
7In the bivariate case, the parameter ρ is the cross-correlation between X1 and X2, that

is the element (1, 2) of the correlation matrix.
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It follows that the expression of the bivariate normal copula function is also
equal to:

C (u1, u2; ρ) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
φ2 (x1, x2; ρ) dx1 dx2 (15.6)

where φ2 (x1, x2; ρ) is the bivariate normal density:

φ2 (x1, x2; ρ) =
1

2π
√

1− ρ2
exp

(
−x

2
1 + x2

2 − 2ρx1x2

2 (1− ρ2)

)
Exercise 65 Let (X1, X2) be a standardized Gaussian random vector, whose
cross-correlation is ρ. Using the Cholesky decomposition, we write X2 as fol-
lows:

X2 = ρX1 +
√

1− ρ2X3 ≤ x2

where X3 ∼ N (0, 1) is independent from X1 and X2. We have:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1, X2 ≤ x2}

= E
[
Pr
{
X1 ≤ x1, ρX1 +

√
1− ρ2X3 ≤ x2 | X1

}]
=

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx

It follows that:

C (u1, u2; ρ) =

∫ Φ−1(u1)

−∞
Φ

(
Φ−1 (u2)− ρx√

1− ρ2

)
φ (x) dx

We finally obtain that the bivariate normal copula function is equal to:

C (u1, u2; ρ) =

∫ u1

0

Φ

(
Φ−1 (u2)− ρΦ−1 (u)√

1− ρ2

)
du (15.7)

This expression is more convenient to use than Equation (15.6).

Like the normal distribution, the normal copula is easy to manipulate for
computational purposes. For instance, Kendall’s tau and Spearman’s rho are
equal to:

τ =
2

π
arcsin ρ

and:
% =

6

π
arcsin

ρ

2

The conditional distribution C2|1 (u1, u2) has the following expression:

C2|1 (u1, u2) = ∂1C (u1, u2)

= Φ

(
Φ−1 (u2)− ρΦ−1 (u1)√

1− ρ2

)
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To compute the tail dependence, we apply Equation (15.4) and obtain:

λ+ = 2− 2 lim
u→1−

Φ

(
Φ−1 (u)− ρΦ−1 (u)√

1− ρ2

)

= 2− 2 lim
u→1−

Φ

(√
1− ρ√
1 + ρ

Φ−1 (u)

)
We finally deduce that:

λ+ = λ− =

{
0 if ρ < 1
1 if ρ = 1

In Figure 15.11, we have represented the quantile-quantile dependence mea-
sure λ+ (α) for several values of the parameter ρ. When ρ is equal to 90% and
α is close to one, we notice that λ+ (α) dramatically decreases. This means
that even if the correlation is high, the extremes are independent.

FIGURE 15.11: Tail dependence λ+ (α) for the normal copula

15.3.3 Student’s t copula

In a similar way, the Student’s t copula is the dependency function asso-
ciated with the multivariate Student’s t probability distribution:

C (u1, . . . , un; ρ, ν) = Tn

(
T−1
ν (u1) , . . . ,T−1

ν (un) ; ρ, ν
)
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By using the definition of the cumulative distribution function:

Tn (x1, . . . , xn; ρ, ν) =

∫ x1

−∞
· · ·
∫ xn

−∞

Γ
(
ν+n

2

)
|ρ|−

1
2

Γ
(
ν
2

)
(νπ)

n
2

(
1 +

1

ν
x>ρ−1x

)− ν+n
2

dx

we can show that the copula density is then:

c (u1, . . . , un, ; ρ, ν) = |ρ|−
1
2

Γ
(
ν+n

2

) [
Γ
(
ν
2

)]n[
Γ
(
ν+1

2

)]n
Γ
(
ν
2

) (1 + 1
νx
>ρ−1x

)− ν+n
2∏n

i=1

(
1 +

x2
i

ν

)− ν+1
2

where xi = T−1
ν (ui). In the bivariate case, we deduce that the t copula has

the following expression:

C (u1, u2; ρ, ν) =

∫ T−1
ν (u1)

−∞

∫ T−1
ν (u2)

−∞

1

2π
√

1− ρ2
×

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν (1− ρ2)

)− ν+2
2

dx1 dx2

Like the normal copula, we can obtain another expression, which is easier to
manipulate. Let (X1, X2) be a random vector whose probability distribution
is T2 (x1, x2; ρ, ν). Conditional to X1 = x1, we have:(

ν + 1

ν + x2
1

)1/2
X2 − ρx1√

1− ρ2
∼ Tν+1

The conditional distribution C2|1 (u1, u2) is then:

C2|1 (u1, u2; ρ, ν) = Tν+1

( ν + 1

ν +
[
T−1
ν (u1)

]2
)1/2

T−1
ν (u2)− ρT−1

ν (u1)√
1− ρ2


We deduce that:

C (u1, u2; ρ, ν) =

∫ u1

0

C2|1 (u, u2; ρ, ν) du

We can show that the expression of Kendall’s tau for the t copula is the
one obtained for the normal copula. In the case of Spearman’s rho, there
is no analytical expression. We denote by %t (ρ, ν) and %n (ρ) the values of
Spearman’s rho for Student’s t and normal copulas with same parameter ρ. We
can show that %t (ρ, ν) > %n (ρ) for negative values of ρ and %t (ρ, ν) < %n (ρ)
for positive values of ρ. In Figure 15.12, we report the relationship between τ
and % for different degrees of freedom ν.
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FIGURE 15.12: Relationship between τ and % of the Student’s t copula

Because the t copula is symmetric, we can apply Equation (15.4) and
obtain:

λ+ = 2− 2 lim
u→1−

Tν+1

( ν + 1

ν +
[
T−1
ν (u)

]2
)1/2

T−1
ν (u)− ρT−1

ν (u)√
1− ρ2


= 2− 2Tν+1

((
(ν + 1) (1− ρ)

(1 + ρ)

)1/2
)

We finally deduce that:

λ+ =

{
0 if ρ = −1
> 0 if ρ > −1

Contrary to the normal copula, the t copula has an upper tail dependence.
In Figures 15.13 and 15.14, we represent the quantile-quantile dependence
measure λ+ (α) for two degrees of freedom ν. We observe that the behavior
of λ+ (α) is different than the one obtained in Figure 15.11 with the normal
copula. In Table 15.2, we give the numerical values of the coefficient λ+ for
various values of ρ and ν. We notice that it is strictly positive for small degrees
of freedom even if the parameter ρ is negative. For instance, λ+ is equal to
13.40% when ν and ρ are equal to 1 and −50%. We also observe that the
convergence to the Gaussian case is low when the parameter ρ is positive.
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FIGURE 15.13: Tail dependence λ+ (α) for the Student’s t copula (ν = 1)

FIGURE 15.14: Tail dependence λ+ (α) for the Student’s t copula (ν = 4)
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TABLE 15.2: Values in % of the upper tail dependence λ+ for the t copula

ν
Parameter ρ (in %)

−70.00 −50.00 0.00 50.00 70.00 90.00
1 7.80 13.40 29.29 50.00 61.27 77.64
2 2.59 5.77 18.17 39.10 51.95 71.77
3 0.89 2.57 11.61 31.25 44.81 67.02
4 0.31 1.17 7.56 25.32 39.07 62.98
6 0.04 0.25 3.31 17.05 30.31 56.30

10 0.00 0.01 0.69 8.19 19.11 46.27
∞ 0.00 0.00 0.00 0.00 0.00 0.00

Remark 56 The normal copula is a particular case of the Student’s t copula
when ν tends to ∞. This is why these two copulas are often compared for a
given value of ρ. However, we must be careful because the previous analysis of
the tail dependence has shown that these two copulas are very different. Let
us consider the bivariate case. We can write the Student’s t random vector
(T1, T2) as follows:

(T1, T2) =
(N1, N2)√

X/ν

=

(
N1√
X/ν

, ρ
N1√
X/ν

+
√

1− ρ2
N3√
X/ν

)

where N1 and N3 are two independent Gaussian random variables and X is a
random variable, whose probability distribution is χ2

ν . This is the introduction
of the random variable X that produces a strong dependence between T1 and
T2, and correlates the extremes. Even if the parameter ρ is equal to zero, we
obtain:

(T1, T2) =

(
N1√
X/ν

,
N3√
X/ν

)
This implies that the product copula C⊥ can never be attained by the t copula.

15.4 Statistical inference and estimation of copula func-
tions

We now consider the estimation problem of copula functions. We first in-
troduce the empirical copula, which may viewed as a non-parametric estimator
of the copula function. Then, we discuss the method of moments to estimate
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the parameters of copula functions. Finally, we apply the method of maximum
likelihood and show the different forms of implementation.

15.4.1 The empirical copula

Let F̂ be the empirical distribution associated to a sample of T observations
of the random vector (X1, . . . , Xn). Following Deheuvels (1979), any copula
Ĉ ∈ C defined on the lattice L:

L =

{(
t1
T
, . . . ,

tn
T

)
: 1 ≤ j ≤ n, tj = 0, . . . , T

}
by the function:

Ĉ

(
t1
T
, . . . ,

tn
T

)
=

1

T

T∑
t=1

n∏
i=1

1 {Rt,i ≤ ti}

is an empirical copula. Here Rt,i is the rank statistic of the random variable
Xi meaning that XRt,i:T,i = Xt,i. We notice that Ĉ is the copula function
associated to the empirical distribution F̂. However, Ĉ is not unique because
F̂ is not continuous. In the bivariate case, we obtain:

Ĉ

(
t1
T
,
t2
T

)
=

1

T

T∑
t=1

1 {Rt,1 ≤ t1,Rt,2 ≤ t2}

=
1

T

T∑
t=1

1 {xt,1 ≤ xt1:T,1, xt,2 ≤ xt2:T,2}

where {(xt,1, xt,2) , t = 1, . . . , T} denotes the sample of (X1, X2). Nelsen (2006)
defines the empirical copula frequency function as follows:

ĉ

(
t1
T
,
t2
T

)
= Ĉ

(
t1
T
,
t2
T

)
− Ĉ

(
t1 − 1

T
,
t2
T

)
−

Ĉ

(
t1
T
,
t2 − 1

T

)
+ Ĉ

(
t1 − 1

T
,
t2 − 1

T

)
=

1

T

T∑
t=1

1 {xt,1 = xt1:T,1, xt,2 = xt2:T,2}

We have then:

Ĉ

(
t1
T
,
t2
T

)
=

t1∑
j1=1

t2∑
j2=1

ĉ

(
j1
T
,
j2
T

)
We can interpret ĉ as the probability density function of the sample.
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Example 66 We consider the daily returns of European (EU) and American
(US) MSCI equity indices from January 2006 and December 2015. In Figure
15.15, we represent the level lines of the empirical copula and compare them
with the level lines of the normal copula. For this copula function, the param-
eter ρ is estimated by the linear correlation between the daily returns of the
two MSCI equity indices. We notice that the normal copula does not exactly
fit the empirical copula.

FIGURE 15.15: Comparison of the empirical copula (blue line) and the
normal copula (red line)

Like the histogram of the empirical distribution function F̂, it is diffi-
cult to extract information from Ĉ or ĉ, because these functions are not
smooth8. It is better to use a dependogram. This representation has been
introduced by Deheuvels (1981), and consists in transforming the sam-
ple {(xt,1, xt,2) , t = 1, . . . , T} of the random vector (X1, X2) into a sample
{(ut,1, ut,2) , t = 1, . . . , T} of uniform random variables (U1, U2) by consider-
ing the rank statistics:

ut,i =
1

T
Rt,i

The dependogram is then the scatter plot between ut,1 and ut,2. For instance,

8This is why they are generally coupled with approximation methods based on Bernstein
polynomials (Sancetta and Satchell, 2004).
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FIGURE 15.16: Dependogram of EU and US equity returns

FIGURE 15.17: Dependogram of simulated Gaussian returns
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Figure 15.16 shows the dependogram of EU and US equity returns. We can
compare this figure with the one obtained by assuming that equity returns
are Gaussian. Indeed, Figure 15.17 shows the dependogram of a simulated
bivariate Gaussian random vector when the correlation is equal to 57.8%,
which is the estimated value between EU and US equity returns during the
study period.

15.4.2 The method of moments

When it is applied to copulas, this method is different than the one pre-
sented in Chapter 14. Indeed, it consists in estimating the parameters θ of
the copula function from the population version of concordance measures. For
instance, if τ = fτ (θ) is the relationship between θ and Kendall’s tau, the
MM estimator is simply the inverse of this relationship:

θ̂ = f−1
τ (τ̂)

where τ̂ is the estimate of Kendall’s tau based on the sample9. For instance,
in the case of the Gumbel copula, we obtain:

θ̂ =
1

1− τ̂

Remark 57 This approach is also valid for other concordance measures like
Spearman’s rho. We have then:

θ̂ = f−1
% (%̂)

where %̂ is the estimate10 of Spearman’s rho and f% is the theoretical relation-
ship between θ and Spearman’s rho.

Example 67 We consider the daily returns of 5 asset classes from January
2006 and December 2015. These asset classes are represented by the Eu-
ropean MSCI equity index, the American MSCI equity index, the Barclays
sovereign bond index, the Barclays corporate investment grade bond index and
the Bloomberg commodity index. In Table 15.3, we report the correlation ma-
trix. In Tables 15.4 and 15.5, we assume that the dependence function is a
normal copula and give the matrix ρ̂ of estimated parameters using the method
of moments based on Kendall’s tau and Spearman’s rho. We notice that these
two matrices are very close, but we also also observe some important differ-
ences with the correlation matrix reported in Table 15.3.

9We have:
τ̂ =

c− d
c+ d

where c and d are respectively the number of concordant and discordant pairs.
10It is equal to the the linear correlation between the rank statistics.
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TABLE 15.3: Matrix of linear correlations ρ̂i,j

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 57.8 100.0
Sovereign −34.0 −32.6 100.0
Credit −15.1 −28.6 69.3 100.0
Commodity 51.8 34.3 −22.3 −14.4 100.0

TABLE 15.4: Matrix of parameters ρ̂i,j estimated using Kendall’s tau

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 57.7 100.0
Sovereign −31.8 −32.1 100.0
Credit −17.6 −33.8 73.9 100.0
Commodity 43.4 30.3 −19.6 −15.2 100.0

15.4.3 The method of maximum likelihood

Let us denote by {(xt,1, . . . , xt,n) , t = 1 . . . , T} the sample of the random
vector (X1, . . . , Xn), whose multivariate distribution function has the follow-
ing canonical decomposition:

F (x1, . . . , xn) = C (F1 (x1; θ1) , . . . ,Fn (xn; θn) ; θc)

This means that this statistical model depends on two types of parameters:

• the parameters (θ1, . . . , θn) of univariate distribution functions;

• the parameters θc of the copula function.

TABLE 15.5: Matrix of parameters ρ̂i,j estimated using Spearman’s rho

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 55.4 100.0
Sovereign −31.0 −31.3 100.0
Credit −17.1 −32.7 73.0 100.0
Commodity 42.4 29.4 −19.2 −14.9 100.0
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The expression of the log-likelihood function is:

` (θ1, . . . , θn, θc) =

T∑
t=1

ln c (F1 (xt,1; θ1) , . . . ,Fn (xt,n; θn) ; θc) +

T∑
t=1

n∑
i=1

ln fi (xt,i; θi)

where c is the copula density and fi is the probability density function asso-
ciated to Fi. The ML estimator is then defined as follows:(

θ̂1, . . . , θ̂n, θ̂c

)
= arg max ` (θ1, . . . , θn, θc)

The estimation by maximum likelihood method can be time-consuming
when the number of parameters is large. However, the copula approach sug-
gests a two-stage parametric method (Shih and Louis, 1995):

1. the first stage involves maximum likelihood from univariate marginals,
meaning that we estimate the parameters θ1, . . . , θn separately for each
marginal:

θ̂i = arg max

T∑
t=1

ln fi (xt,i; θi)

2. the second stage involves maximum likelihood of the copula parameters
θc with the univariate parameters θ̂1, . . . , θ̂n held fixed from the first
stage:

θ̂c = arg max

T∑
t=1

ln c
(
F1

(
xt,1; θ̂1

)
, . . . ,Fn

(
xt,n; θ̂n

)
; θc

)
This approach is known as the method of inference functions for marginals or
IFM (Joe, 1997). Let θ̂IFM be the IFM estimator obtained with this two-stage
procedure. We have:

T 1/2
(
θ̂IFM − θ0

)
→ N

(
0,V−1 (θ0)

)
where V (θ0) is the Godambe matrix (Joe, 1997).

Genest et al. (1995) propose a third estimation method, which consists in
estimating the copula parameters θc by considering the nonparametric esti-
mates of the marginals F1, . . . ,Fn:

θ̂c = arg max

T∑
t=1

ln c
(
F̂1 (xt,1) , . . . , F̂n (xt,n) ; θc

)
In this case, F̂i (xt,i) is the normalized rank Rt,i/T . This estimator called
omnibus or OM is then the ML estimate applied to the dependogram.
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Example 68 Let us assume that the dependence function of asset returns
(X1, X2) is the Frank copula whereas the marginals are Gaussian. The log-
likelihood function for observation t is then equal to:

`t = ln
(
θc
(
1− e−θc

)
e−θc(Φ(yt,1)+Φ(yt,2))

)
−

ln
((

1− e−θc
)
−
(

1− e−θcΦ(yt,1)
)(

1− e−θcΦ(yt,2)
))2

−(
1

2
ln 2π +

1

2
lnσ2

1 +
1

2
y2
t,1

)
−(

1

2
ln 2π +

1

2
lnσ2

2 +
1

2
y2
t,2

)
where yt,i = σ−1

i (xt,i − µi) is the standardized return of Asset i for the ob-
servation t. The vector of parameters to estimate is θ = (µ1, σ1, µ2, σ2, θc).
In the case of the IFM approach, the parameters (µ1, σ1, µ2, σ2) are estimated
in a first step. Then, we estimate the copula parameter θc by considering the
following log-likelihood:

`t = ln
(
θc
(
1− e−θc

)
e−θc(Φ(ŷt,1)+Φ(ŷt,2))

)
−

ln
((

1− e−θc
)
−
(

1− e−θcΦ(ŷt,1)
)(

1− e−θcΦ(ŷt,2)
))2

where ŷt,i is equal to σ̂−1
i (xt,i − µ̂i). Finally, the OM approach uses the uni-

form variates ut,i = Rt,i/T in the expression of the log-likelihood function:

`t = ln
(
θc
(
1− e−θc

)
e−θc(ut,1+ut,2)

)
−

ln
((

1− e−θc
)
−
(
1− e−θcut,1

) (
1− e−θcut,2

))2
Using the returns of MSCI Europe and US indices for the last 10 years,

we obtain the following results for the parameter θc of the Frank copula:

ML IFM OM Method of Moments
Kendall Spearman

θ̂c 6.809 6.184 4.149 3.982 3.721

τ̂ 0.554 0.524 0.399 0.387 0.367

%̂ 0.754 0.721 0.571 0.555 0.529

We obtain θ̂c = 6.809 for the method of maximum likelihood and θ̂c = 6.184
for the IFM approach. These results are very close, that is not the case with
the omnibus approach where we obtain θ̂c = 4.149. This means that the as-
sumption of Gaussian marginals is far to be verified. The specification of wrong
marginals in ML and IFM approaches induces then a bias in the estimation of
the copula parameter. With the omnibus approach, we do not face this issue
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because we consider non-parametric marginals. This explains that we obtain
a value, which is close to the MM estimates (Kendall’s tau and Spearman’s
rho).

For IFM and OM approaches, we can obtain a semi-analytical expression
of θ̂c for some specific copula functions. In the case of the normal copula, the
matrix ρ of the parameters is estimated with the following algorithm:

1. we first transform the uniform variates ut,i into Gaussian variates:

nt,i = Φ−1 (ut,i)

2. we then calculate the correlation matrix of the Gaussian variates nt,i.

For the Student’s t copula, Bouyé et al. (2000) suggest the following algorithm:

1. Let ρ̂0 be the estimated value of ρ for the Gaussian copula;

2. ρ̂k+1 is obtained using the following equation:

ρ̂k+1 =
1

T

T∑
t=1

(ν + n) ςtς
>
t

ν + ς>t ρ̂
−1
k ςt

where:

ςt =

 t−1
ν (ut,1)

...
t−1
ν (ut,n)


3. Repeat the second step until convergence: ρ̂k+1 = ρ̂k := ρ̂∞.

Let us consider Example 67. We have estimated the parameter matrix ρ
of Gaussian and Student’s t copula using the omnibus approach. Results are
given in Tables 15.6, 15.7 and 15.8. We notice that these matrices are different
than the correlation matrix calculated in Table 15.3. The reason is that we
have previously assumed that the marginals were Gaussian. In this case, the
ML estimate introduced a bias in the copula parameter in order to compensate
the bias induced by the wrong specification of the marginals.

TABLE 15.6: Omnibus estimate ρ̂ (Gaussian copula)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 56.4 100.0
Sovereign −32.5 −32.1 100.0
Credit −16.3 −30.3 70.2 100.0
Commodity 46.5 30.7 −21.1 −14.7 100.0
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TABLE 15.7: Omnibus estimate ρ̂ (Student’s t copula with ν = 1)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 47.1 100.0
Sovereign −20.3 −18.9 100.0
Credit −9.3 −22.1 57.6 100.0
Commodity 28.0 17.1 −7.4 −6.2 100.0

TABLE 15.8: Omnibus estimate ρ̂ (Student’s t copula with ν = 4)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 59.6 100.0
Sovereign −31.5 −31.9 100.0
Credit −18.3 −32.9 71.3 100.0
Commodity 43.0 30.5 −17.2 −13.4 100.0

Remark 58 The discrepancy between the ML or IFM estimate and the OM
estimate is an interesting information for knowing if the specification of the
marginals are right or not. In particular, a large discrepancy indicates that the
estimated marginals are far from the empirical marginals.

15.5 Exercises

15.5.1 Gumbel logistic copula

1. Calculate the density of the Gumbel logistic copula.

2. Show that it has a lower tail dependence, but no upper tail dependence.

15.5.2 Farlie-Gumbel-Morgenstern copula

We consider the following function:

C (u1, u2) = u1u2 (1 + θ (1− u1) (1− u2)) (15.8)

1. Show that C is a copula function for θ ∈ [−1, 1].

2. Calculate the tail dependence coefficient λ, the Kendall’s τ statistic and
the Spearman’s % statistic.

3. Let X = (X1, X2) be a bivariate random vector. We assume that X1 ∼
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N
(
µ, σ2

)
and X2 ∼ E (λ). Propose an algorithm to simulate (X1, X2)

when the copula is the function (15.8).

4. Calculate the log-likelihood function of the sample
{

(x1,i, x2,i)
i=n
i=1

}
.

15.5.3 Survival copula

Let S be the bivariate function defined by:

S (x1, x2) = exp

(
−
(
x1 + x2 − θ

x1x2

x1 + x2

))
with θ ∈ [0, 1], x1 ≥ 0 et x2 ≥ 0.

1. Verify that S is a survival distribution.

2. Define the survival copula associated to S.

15.5.4 Method of moments

Let (X1, X2) be a bivariate random vector such that X1 ∼ N
(
µ1, σ

2
1

)
and

X2 ∼ N
(
µ2, σ

2
2

)
. We consider that the dependence function is given by the

following copula:

C (u1, u2) = θC− (u1, u2) + (1− θ) C+ (u1, u2)

where θ ∈ [0, 1] is the copula parameter.

1. We assume that µ1 = µ2 = 0 and σ1 = σ2 = 1. Find the parameter
θ such that the linear correlation of X1 and X2 is equal to zero. Show
that there exists a function f such that X1 = f (X2). Comment on this
result.

2. Calculate the linear correlation of X1 and X2 as a function of the pa-
rameters µ1, µ2, σ1, σ2 and θ.

3. Propose a method of moments to estimate θ.

15.5.5 Correlated loss given default rates

We assume that the probability distribution of the (annual) loss given
default rate associated to a risk class C is given by:

F (x) = Pr {LGD ≤ x}
= xγ

1. Find the conditions on the parameter γ that are necessary for F to be
a probability distribution.
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2. Let {x1, . . . , xn} be a sample of loss given default rates. Calculate the
log-likelihood function and deduce the ML estimator γ̂ML.

3. Calculate the first moment E [LGD]. Then find the method of moments
estimator γ̂MM.

4. We assume that xi = 50% for all i. Calculate the numerical values taken
by γ̂ML and γ̂MM. Comment on these results.

5. We now consider two risk classes C1 and C2 and note LGD1 and LGD2

the corresponding LGD rates. We assume that the dependence function
between LGD1 and LGD2 is given by the Gumbel-Barnett copula:

C (u1, u2) = u1u2e
−θ lnu1 lnu2

where θ is the copula parameter. Show that the density function of the
copula is equal to:

c (u1, u2; θ) =
(
1− θ − θ ln (u1u2) + θ2 lnu1 lnu2

)
e−θ lnu1 lnu2

6. Deduce the log-likelihood function of the historical sample
{

(xi, yi)
i=n
i=1

}
.

7. We note γ̂1, γ̂2 and θ̂ the ML estimators of the parameters γ1 (risk class
C1), γ2 (risk class C2) and θ (copula parameter). Why the ML estimator
γ̂1 does not correspond to the ML estimator γ̂ML except in the case
θ̂ = 0. Illustrate with an example.

15.5.6 Calculation of correlation bounds

1. Give the mathematical definition of the copula functions C−, C⊥ and
C+. What is the probabilistic interpretation of these copulas?

2. We note τ and LGD the default time and the loss given default of a
counterparty. We assume that τ ∼ E (λ) and LGD ∼ U[0,1].

(a) Show that the dependence between τ and LGD is maximum when
the following equality holds:

LGD +e−λτ − 1 = 0

(b) Show that the linear correlation ρ (τ ,LGD) verifies the following
inequality:

|ρ 〈τ ,LGD〉| ≤
√

3

2

(c) Comment on these results.

3. We consider two exponential default times τ 1 and τ 2 with parameters
λ1 and λ2.
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(a) We assume that the dependence function between τ 1 and τ 2 is C+.
Demonstrate that the following relation is true:

τ 1 =
λ2

λ1
τ 2

(b) Show that there exists a function f such that τ 2 = f (τ 2) when
the dependence function is C−.

(c) Show that the lower and upper bounds of the linear correlation
satisfy the following relationship:

−1 < ρ 〈τ 1, τ 2〉 ≤ 1

(d) In the more general case, show that the linear correlation of a ran-
dom vector (X1, X2) can not be equal to −1 if the support of the
random variables X1 and X2 is [0,+∞].

4. We assume that (X1, X2) is a Gaussian random vector where X1 ∼
N
(
µ1, σ

2
1

)
, X2 ∼ N

(
µ2, σ

2
2

)
and ρ is the linear correlation between X1

and X2. We note θ = (µ1, σ1, µ2, σ2, ρ) the set of parameters.

(a) Find the probability distribution of X1 +X2.

(b) Then show that the covariance between Y1 = eX1 and Y2 = eX2 is
equal to:

cov (Y1, Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)

(c) Deduce the correlation between Y1 and Y2.

(d) For which values of θ does the equality ρ 〈Y1, Y2〉 = +1 hold? Same
question when ρ 〈Y1, Y2〉 = −1.

(e) We consider the bivariate Black-Scholes model:{
dS1 (t) = µ1S1 (t) dt+ σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt+ σ2S2 (t) dW2 (t)

with E [W1 (t)W2 (t)] = ρt. Deduce the linear correlation between
S1 (t) and S2 (t). Find the limit case limt→∞ ρ 〈S1 (t) , S2 (t)〉.

(f) Comment on these results.





Chapter 16
Extreme Value Theory

This chapter is dedicated to tail (or extreme) risk modeling. Tail risk recovers
two notions. The first one is related to rare events, meaning that a severe
loss may occur with a very small probability. The second one concerns the
magnitude of a loss that is difficult to reconciliate with the observed volatility
of the portfolio. Of course, the two notions are connected, but the second is
more frequent. For instance, stock market crashes are numerous since the end
of the eighties. The study of these rare or abnormal events needs an appropri-
ate framework to analyze their risk. This is the subject of this chapter. In a
first section, we consider order statistics, which are very useful to understand
the underlying concept of tail risk. Then, we present the extreme value the-
ory (EVT) in the unidimensional case. Finally, the last section deals with the
correlation issue between extreme risks.

16.1 Order statistics

16.1.1 Main Properties

Let X1, . . . , Xn be iid random variables, whose probability distribution is
denoted by F. We rank these random variables by increasing order:

X1:n ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ Xn:n

Xi:n is called the ith order statistic in the sample of size n. We note xi:n the
corresponding random variate or the value taken by Xi:n. We have:

Fi:n (x) = Pr {Xi:n ≤ x}
= Pr {at least i variables among X1, . . . , Xn are less or equal to x}

=

n∑
k=i

Pr {k variables among X1, . . . , Xn are less or equal to x}

=

n∑
k=i

(
n

k

)
F (x)

k
(1− F (x))

n−k (16.1)

403
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We note f the density function of F. We deduce that the density function of
Xi:n has the following expression1:

fi:n (x) =

n∑
k=i

(
n

k

)
kF (x)

k−1
(1− F (x))

n−k
f (x)−

n−1∑
k=i

(
n

k

)
F (x)

k
(n− k) (1− F (x))

n−k−1
f (x)

=

n∑
k=i

n!

(k − 1)! (n− k)!
F (x)

k−1
(1− F (x))

n−k
f (x)−

n−1∑
k=i

n!

k! (n− k − 1)!
F (x)

k
(1− F (x))

n−k−1
f (x)

=

n∑
k=i

n!

(k − 1)! (n− k)!
F (x)

k−1
(1− F (x))

n−k
f (x)−

n∑
k=i+1

n!

(k − 1)! (n− k)!
F (x)

k−1
(1− F (x))

n−k
f (x)

=
n!

(i− 1)! (n− i)!
F (x)

i−1
(1− F (x))

n−i
f (x) (16.2)

Example 69 If X1, . . . , Xn follow a uniform distribution U[0,1], we obtain:

Fi:n (x) =

n∑
k=i

(
n

k

)
xk (1− x)

n−k

= B (x; i, n− i+ 1)

where B (x; a, b) is the regularized incomplete beta function2:

B (x; a, b) =
1

B (a, b)

∫ x

0

ta−1 (1− t)b−1
dt

We deduce that Xi:n ∼ B (i, n− i+ 1). It follows that the expected value of the
order statistic Xi:n is equal to:

E [Xi:n] = E [B (i, n− i+ 1)]

=
i

n+ 1

1When k is equal to n, the derivative of (1− F (x))n−k is equal to zero. This explains
that the second summation does not include the case k = n.

2It is also the Beta probability distribution: B (x; a, b) = Pr {X ≤ x} where X ∼ B (a, b).
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We verify the stochastic ordering:

j > i⇒ Fi:n � Fj:n

Indeed, we have:

Fi:n (x) =

n∑
k=i

(
n

k

)
F (x)

k
(1− F (x))

n−k

=

j−1∑
k=i

(
n

k

)
F (x)

k
(1− F (x))

n−k
+

n∑
k=j

(
n

k

)
F (x)

k
(1− F (x))

n−k

= Fj:n (x) +

j−1∑
k=i

(
n

k

)
F (x)

k
(1− F (x))

n−k

meaning that Fi:n (x) ≥ Fj:n (x). In Figure 16.1, we illustrate this property
when the random variablesX1, . . . , Xn follow the normal distributionN (0, 1).
We verify that Fi:n (x) increases with the ordering value i.

FIGURE 16.1: Distribution function Fi:n when the random variables
X1, . . . , Xn are Gaussian
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16.1.2 Extreme order statistics

Two order statistics are particularly interesting for the study of rare events.
They are the lower and higher order statistics:

M−n = X1:n = min (X1, . . . , Xn)

and:
M+
n = Xn:n = max (X1, . . . , Xn)

We can find their probability distributions by setting i = 1 and i = n in
Formula (16.1). We can also retrieve their expression by noting that:

F1:n (x) = Pr {min (X1, . . . , Xn) ≤ x}
= 1− Pr {min (X1, . . . , Xn) ≥ x}
= 1− Pr {X1 ≥ x,X2 ≥ x, . . . ,Xn ≥ x}

= 1−
n∏
i=1

Pr {Xi ≥ x}

= 1−
n∏
i=1

(1− Pr {Xi ≤ x})

= 1− (1− F (x))
n

and:

Fn:n (x) = Pr {max (X1, . . . , Xn) ≤ x}
= Pr {X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x}

=

n∏
i=1

Pr {Xi ≤ x}

= F (x)
n

We deduce that the density functions are equal to:

f1:n (x) = n (1− F (x))
n−1

f (x)

and
fn:n (x) = nF (x)

n−1
f (x)

Let us consider an example with the Gaussian distribution N (0, 1). Figure
16.2 shows the evolution of the density function fn:n with respect to the
sample size n. We verify the stochastic ordering: n > m⇒ Fn:n � Fm:m.

Let us now illustrate the impact of distribution tails on order statistics.
We consider the daily returns of the MSCI USA index from 1995 to 2015. We
consider three hypotheses:
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FIGURE 16.2: Density function fn:n of the Gaussian random variable
N (0, 1)

H1 Daily returns are Gaussian, meaning that:

Rt = µ̂+ σ̂Xt

where Xt ∼ N (0, 1), µ̂ is the empirical mean of daily returns and σ̂ is
the daily standard deviation.

H2 Daily returns follow a Student’s t distribution3:

Rt = µ̂+ σ̂

√
ν − 2

ν
Xt

where Xt ∼ tν . We consider two alternative assumptions: H2a : ν = 3
and H2b : ν = 6.

We represent the probability density function of Rn:n for several values of
n in Figure 16.3. When n is equal to one trading day, Rn:n is exactly the
daily return. We notice that it is difficult to measure the impact of the distri-
bution tail. However, when n increases, the impact becomes more and more
important. Order statistics allow to amplify local phenomena of probability

3We add the factor
√
ν−2
ν

in order to verify that var (Rt) = σ̂2.
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FIGURE 16.3: Density function of the maximum order statistic (daily return
of the MSCI USA index, 1995-2015)

distributions. In particular, extreme order statistics are a very useful tool to
analyze left and right tails.

Remark 59 The limit distributions of minima and maxima are given by the
following results:

lim
n→∞

F1:n (x) = lim
n→∞

1− (1− F (x))
n

=

{
0 if F (x) = 0
1 if F (x) > 0

and:

lim
n→∞

Fn:n (x) = lim
n→∞

F (x)
n

=

{
0 if F (x) < 1
1 if F (x) = 1

We deduce that the limit distributions are degenerate as they only take values
of 0 and 1. This property is very important, because it means that we cannot
study extreme events by considering these limit distributions. This is why the
extreme value theory is based on another convergence approach of extreme
order statistics.
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16.1.3 Inference statistics

The common approach to estimate the parameters θ of the probability
density function f (x; θ) is to maximize the log-likelihood function of a given
sample {x1, . . . , xT }:

θ̂ = arg max

T∑
t=1

ln f (xt; θ)

In a similar way, we can consider the sample4
{
x′1, . . . , x

′
nS

}
of the order

statistic Xi:n and estimate the parameters θ by the method of maximum
likelihood:

θ̂i:n = arg max `i:n (θ)

where:

`i:n (θ) =

nS∑
s=1

ln fi:n (x′s; θ)

=

nS∑
s=1

ln
n!

(i− 1)! (n− i)!
F (x′s; θ)

i−1
(1− F (x′s; θ))

n−i
f (x′s; θ)

The computation of the log-likelihood function gives:

`i:n (θ) = nS lnn!− nS ln (i− 1)!− nS ln (n− i)! +

(i− 1)

nS∑
s=1

ln F (x′s; θ) + (n− i)
nS∑
s=1

ln (1− F (x′s; θ)) +

nS∑
s=1

ln f (x′s; θ)

By definition, the traditional ML estimator is equal to new ML estimator
when n = 1 and i = 1:

θ̂ = θ̂1:1

In the other cases (n > 1), there is no reason that the two estimators coincide
exactly:

θ̂i:n 6= θ̂

However, if the random variates are drawn from the distribution function
X ∼ F (x; θ), we can test the hypothesis H : θ̂i:n = θ for all n and i ≤ n. If two
estimates θ̂i:n and θ̂i′:n′ are very different, this indicates that the distribution
function is certainly not appropriate for modeling the random variable X.

Let us consider the previous example with the returns of the MSCI USA
index. We assume that the daily returns can be modeled with the Student’s t
distribution:

Rt − µ
σ

∼ tν

4The size of the sample nS is equal to the size of the original sample T divided by n.
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TABLE 16.1: ML estimate of σ (in bps) for the distribution t1

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 50
2 48 49
3 44 54 44
4 41 53 53 41
5 38 52 55 51 37
6 35 51 56 56 48 33
7 32 49 55 56 55 45 29
8 31 48 53 55 54 50 43 26
9 29 46 55 56 57 55 49 40 25
10 28 43 53 58 57 56 53 48 37 20

TABLE 16.2: ML estimate of σ (in bps) for the distribution t6

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 88
2 89 87
3 91 91 85
4 95 92 89 87
5 98 99 87 90 88
6 101 104 95 88 92 89
7 101 112 100 88 94 95 89
8 102 116 103 89 85 89 98 89
9 105 121 117 97 85 86 94 101 88
10 105 123 120 108 91 87 92 99 104 88

TABLE 16.3: ML estimate of σ (in bps) for the distribution t∞

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 125
2 125 124
3 136 116 129
4 147 116 112 140
5 155 133 103 114 150
6 163 142 118 107 122 157
7 171 152 125 105 117 134 162
8 175 165 130 106 99 111 139 170
9 180 174 155 122 95 99 128 152 171
10 183 182 162 136 110 100 111 127 155 181
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The vector of parameters to estimate is then θ = (µ, σ). In Tables 16.1, 16.2
and 16.3, we report the values taken by the ML estimator σ̂i:n obtained by
considering several order statistics and three values of ν. For instance, the ML
estimate σ̂1:1 in the case of the t1 distribution is equal to 50 bps. We notice
that the values taken by σ̂i:n are not very stable with respect to i and n. This
indicates that the three distributions functions (t1, t6 and t∞) are not well
appropriate to represent the index returns. In Figure 16.4, we have reported
the corresponding annualized volatility5 calculated from the order statistics
Ri:10. In the case of the t1 distribution, we notice that it is lower for median
order statistics than extreme order statistics. The t1 distribution has then
the property to over-estimate extreme events. In the case of the Gaussian (or
t∞) distribution, we obtain contrary results. The Gaussian distribution has
the property to under-estimate extreme events. In order to compensate this
bias, the method of maximum likelihood applied to extreme order statistics
will over-estimate the volatility.

FIGURE 16.4: Annualized volatility (in %) calculated from the order statis-
tics Ri:10

Remark 60 The approach based on extreme order statistics to calculate the
volatility is then a convenient way to reduce the under-estimation of the Gaus-
sian value-at-risk.

5The annualized volatility takes the value
√

260× c× σ̂i:n where the constant c is equal
to
√
ν/ (ν − 2). In the case of the t1 distribution, c is equal to 3.2.
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16.1.4 Extension to dependent random variables

Let us now assume that X1, . . . , Xn are not iid. We note C the copula of
the corresponding random vector. It follows that6:

Fn:n (x) = Pr {Xn:n ≤ x}
= Pr {X1 ≤ x, . . . ,Xn ≤ x}
= C (F1 (x) , . . . ,Fn (x))

and:

F1:n (x) = Pr {X1:n ≤ x}
= 1− Pr {X1:n ≥ x}
= 1− Pr {X1 ≥ x, . . . ,Xn ≥ x}
= 1− C̆ (1− F1 (x) , . . . , 1− Fn (x))

where C̆ is the survival copula associated to C. If we are interested in other
order statistics, we use the following formula given in Georges et al. (2001):

Fi:n (x) =

n∑
k=i

 k∑
l=i

(−1)
k−l
(
k

l

) ∑
v(F1(x),...,Fn(x))∈Z(n−k,n)

C (u1, . . . , un)


where:

Z (m,n) =

{
v ∈ [0, 1]

n | vi ∈ {ui, 1} ,
n∑
i=1

1 {vi = 1} = m

}

In order to understand this formula, we consider the case n = 3. We have7:

F1:3 (x) = F1 (x) + F2 (x) + F3 (x)−
C (F1 (x) ,F2 (x) , 1)−C (F1 (x) , 1,F3 (x))−C (1,F2 (x) ,F3 (x)) +

C (F1 (x) ,F2 (x) ,F3 (x))

F2:3 (x) = C (F1 (x) ,F2 (x) , 1) + C (F1 (x) , 1,F3 (x)) + C (1,F2 (x) ,F3 (x))−
2C (F1 (x) ,F2 (x) ,F3 (x))

F3:3 (x) = C (F1 (x) ,F2 (x) ,F3 (x))

6In the case of the product copula and identical distributions, we retrieve the previous
results:

Fn:n (x) = C⊥ (F (x) , . . . ,F (x))

= F (x)n

and:

F1:n (x) = 1−C⊥ (1− F (x) , . . . , 1− F (x))

= 1− (1− F (x))n

7Because C (F1 (x) , 1, 1) = F1 (x).
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We verify that:

F1:3 (x) + F2:3 (x) + F3:3 (x) = F1 (x) + F2 (x) + F3 (x)

The dependence structure has a big impact on the distribution of order
statistics. For instance, if we assume that X1, . . . , Xn are iid, we obtain:

Fn:n (x) = F (x)
n

If the copula function is the Upper Fréchet copula, this result becomes:

Fn:n (x) = C+ (F (x) , . . . ,F (x))

= min (F (x) , . . . ,F (x))

= F (x)

This implies that the occurrence probability of extreme events is lower in this
second case.

We consider nWeibull default times τ i ∼ W (λi, γi). The survival function
is equal to Si (t) = exp (−λitγi). The hazard rate λi (t) is then λiγitγi−1 and
the expression of the density is fi (t) = λi (t) Si (t). If we assume that the
survival copula is the Gumbel-Hougaard copula with parameter θ ≥ 1, the
survival function of the first-to-default is equal to:

S1:n (t) = exp

(
−
(

(− ln S1 (t))
θ

+ . . .+ (− ln Sn (t))
θ
)1/θ

)
= exp

(
−
(∑n

i=1
λθi t

θγi
)1/θ

)
We deduce the expression of the density function:

f1:n (t) =
(∑n

i=1
λθi t

θγi
)1/θ−1 (∑n

i=1
γiλ

θ
i t
θγi−1

)
exp

(
−
(∑n

i=1
λθi t

θγi
)1/θ

)
In the case where the default times are identically distributed, the first-to-
default time is a Weibull default time: τ 1:n ∼ W

(
n1/θλ, γ

)
. In Figure 16.5,

we report the density function f1:10 (t) for the parameters λ = 3% and γ = 2.
We notice that the parameter θ has a big influence on the first-to-default. The
case θ = 1 corresponds to the product copula and we retrieve the previous
result:

S1:n (t) = S (t)
n

When the Gumbel-Hougaard is the upper Fréchet copula (θ →∞), we verify
that the density function of τ 1:n is this of any default time τ i.
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FIGURE 16.5: Density function of the first-to-default τ 1:10

16.2 Univariate extreme value theory

The extreme value theory consists in studying the limit distribution of ex-
treme order statistics X1:n and Xn:n when the sample size tends to infinity.
We will see that the limit distribution converges to three probability distribu-
tions. This result will help to evaluate stress scenarios and to build a stress
testing framework.

Remark 61 In what follows, we only consider the largest order statistic Xn:n.
Indeed, the minimum order statistic X1:n can be defined with respect to the
maximum order statistic Yn:n by setting Yi = −Xi:

X1:n = min (X1, . . . , Xn)

= min (−Y1, . . . ,−Yn)

= −max (Y1, . . . , Yn)

= −Yn:n
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16.2.1 Fisher-Tippet theorem

Theorem 2 (Embrechts et al., 1997) Let X1, . . . , Xn be a sequence of iid
random variables, whose distribution function is F. If there exist two constants
an and bn and a non-degenerate distribution function G such that:

lim
n→∞

Pr

{
Xn:n − bn

an
≤ x

}
= G (x) (16.3)

then G can be classified as one of the following three types8:

Type I (Gumbel) Λ (x) = exp (−e−x)

Type II (Fréchet) Φα (x) = 1 (x ≥ 0) · exp (−x−α)

Type III (Weibull) Ψα (x) = 1 (x ≤ 0) · exp (− (−x)
α

)

The distribution functions Λ, Φα et Ψα are called extreme value distributions.
The Fisher-Tippet theorem is very important, because the set of extreme
value distributions is very small although the set of distribution functions is
very large. We can draw a parallel with the normal distribution and the sum
of random variables. In some sense, the Fisher-Tippet theorem provides an
extreme value analog of the central limit theorem.

Let us consider the case of exponential random variables, whose probability
distribution is F (x) = 1− exp (−λx). We have9:

lim
n→∞

Fn:n (x) = lim
n→∞

(
1− e−λx

)n
= lim
n→∞

(
1− ne−λx

n

)n
= lim
n→∞

exp
(
−ne−λx

)
= 0

We verify that the limit distribution is degenerate. If we consider the affine

8In terms of probability density function, we have:

g (x) = exp
(
−x− e−x

)
(Gumbel)

=1 (x ≥ 0) · αx−(1+α) exp
(
−x−α

)
(Fréchet)

=1 (x ≤ 0) · α (−x)α−1 exp (− (−x)α) (Weibull)

9Because we have:

lim
n→∞

(
1 +

x

n

)n
= 1 + x+

x2

2!
+
x3

3!
+ . . .

= exp (x)
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transformation with an = 1/λ et bn = (lnn) /λ, we obtain:

Pr

{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx+ bn}

=
(

1− e−λ(anx+bn)
)n

=
(
1− e−x−lnn

)n
=

(
1− e−x

n

)n
We deduce that:

G (x) = lim
n→∞

(
1− e−x

n

)n
= exp

(
−e−x

)
It follows that the limit distribution of the affine transformation is not degen-
erate. In Figure 16.6, we illustrate the convergence of Fn (anx+ bn) to the
Gumbel distribution Λ (x).

FIGURE 16.6: Max-convergence of the exponential distribution E (1) to the
Gumbel distribution
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Example 70 If we consider the Pareto distribution, we have:

F (x) = 1−
(
x

x−

)−α
The normalizing constants are an = x−n

1/α and bn = 0. We obtain:

Pr

{
Xn:n − bn

an
≤ x

}
=

(
1−

(
x−n

1/αx

x−

)−α)n

=

(
1− x−α

n

)n
We deduce that the law of the maximum tends to the Fréchet distribution:

lim
n→∞

(
1− x−α

n

)n
= exp

(
−x−α

)
Example 71 For the uniform distribution, the normalizing constants become
an = n−1 and bn = 1 and we obtain the Weibull distribution with α = 1:

lim
n→∞

Pr

{
Xn:n − bn

an
≤ x

}
=

(
1 +

x

n

)n
= exp (x)

16.2.2 Maximum domain of attraction

The application of the Fisher-Tippet theorem is limited because it can be
extremely difficult to find the normalizing constants and the extreme value
distribution for a given probability distribution F. However, the graphical
representation of Λ, Φα and Ψα given in Figure 16.7 already provides some
information. For instance, the Weibull probability distribution concerns ran-
dom variables that are right bounded. This is why it has less interest in finance
than the Fréchet or Gumbel distribution functions10. We also notice some dif-
ference in the shape of the curves. In particular, the Gumbel distribution is
more ‘normal’ than the Fréchet distribution, whose shape and tail depend to
the parameter α (see Figure 16.8).

We say that the distribution function F belongs to the max-domain of at-
traction of the distribution function G and we write F ∈ MDA (G) if the dis-
tribution function of the normalized maximum converges to G. For instance,
we have already seen that E (λ) ∈ MDA (Λ). In what follows, we indicate how
to characterize the set MDA (G) and which normalizing constants are11.

10However, the Weibull probability distribution is related to the Fréchet probability dis-
tribution thanks to the relationship Ψα (x) = Φα

(
−x−1

)
.

11Most of the following results come from Resnick (1987).
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FIGURE 16.7: Density function of Λ, Φ1 and Ψ1

FIGURE 16.8: Density function of the Fréchet probability distribution
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16.2.2.1 MDA of the Gumbel distribution

Theorem 3 F ∈ MDA (Λ) if and only if there exists a function h (t) such
that:

lim
t→x0

1− F (t+ xh (t))

1− F (t)
= exp (−x)

where x0 ≤ ∞. The normalizing constants are then an = h
(
F−1

(
1− n−1

))
and bn = F−1

(
1− n−1

)
.

The previous characterization of MDA (Λ) is difficult to use because we
have to define the function h (t). However, we can show that if the distribution
function F is C2, a sufficient condition is:

lim
x→∞

(1− F (x))× ∂2
x F (x)

(∂x F (x))
2 = −1

For instance, in the case of the Exponential distribution, we have F (x) =
1 − exp (−λx), ∂x F (x) = λ exp (−λx) and ∂2

x F (x) = −λ2 exp (−λx). We
verify that:

lim
x→∞

(1− F (x))× ∂2
x F (x)

(∂x F (x))
2 = lim

x→∞

exp (−λx)×
(
−λ2 exp (−λx)

)
(λ exp (−λx))

2 = −1

If we consider the Gaussian distribution N (0, 1), we have F (x) = Φ (x),
∂x F (x) = φ (x) and ∂2

x F (x) = −xφ (x). Using L’Hospital’s rule, we deduce
that:

lim
x→∞

(1− F (x))× ∂2
x F (x)

(∂x F (x))
2 = lim

x→∞
−xΦ (−x)

φ (x)
= −1

16.2.2.2 MDA of the Fréchet distribution

Definition 1 A function f is regularly varying with index α and we write
f ∈ RVα if we have:

lim
t→∞

f (tx)

f (t)
= xα

for every x > 0.

Theorem 4 F ∈ MDA (Φα) if and only if 1 − F ∈ RV−α. The normalizing
constants are then an = F−1

(
1− n−1

)
and bn = 0.

Using this theorem, we deduce that the distribution function F ∈
MDA (Φα) if it satisfies the following condition:

lim
t→∞

1− F (tx)

1− F (t)
= x−α



420 Lecture Notes on Risk Management & Financial Regulation

If we apply this result to the Pareto distribution, we obtain:

lim
t→∞

1− F (tx)

1− F (t)
= lim

t→∞

(tx/x−)
−α

(t/x−)
−α

= x−α

We deduce that 1−F ∈ RV−α, F ∈ MDA (Φα), an = F−1
(
1− n−1

)
= x−n

1/α

and bn = 0.

Remark 62 The previous theorem suggests that:

1− F (tx)

1− F (t)
≈ x−α

when t is sufficiently large. This means that we must observe a linear rela-
tionship between ln (x) and ln (1− F (tx)):

ln (1− F (tx)) ≈ ln (1− F (t))− α ln (x)

This property can be used to check graphically if a given distribution function
belongs or not to the maximum domain of attraction of the Fréchet distri-
bution. For instance, we observe that N (0, 1) /∈ MDA (Φα) in Figure 16.9,
because the curve is not a straight line.

16.2.2.3 MDA of the Weibull distribution

Theorem 5 F ∈ MDA (Ψα) if and only if 1 − F
(
x0 − x−1

)
∈ RV−α and

x0 < ∞. The normalizing constants are then an = x0 − F−1
(
1− n−1

)
and

bn = x0.

If we consider the uniform distribution with x0 = 1, we have:

F
(
x0 − x−1

)
= 1− 1

x

and:

lim
t→∞

1− F
(
1− t−1x−1

)
1− F (1− t−1)

= lim
t→∞

t−1x−1

t−1

= x−1

We deduce that F ∈ MDA (Ψ1), an = 1− F−1
(
1− n−1

)
= n−1 and bn = 1.

16.2.2.4 Main results

In Table 16.4, we report the maximum domain of attraction and normal-
izing constants of some well-known distribution functions.
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FIGURE 16.9: The graphical verification of the regular variation property
for the N (0, 1) distribution function

Remark 63 Let G (x) be the non-degenerate distribution of Xn:n. We note
an and bn the normalizing constants. We consider the linear transformation
Y = cX + d with c > 0. Because we have Yn:n = cXn:n + d, we deduce that:

G (x) = lim
n→∞

Pr {Xn:n ≤ anx+ bn}

= lim
n→∞

Pr

{
Yn:n − d

c
≤ anx+ bn

}
= lim

n→∞
Pr {Yn:n ≤ ancx+ bnc+ d}

= lim
n→∞

Pr {Yn:n ≤ a′nx+ b′n}

where a′n = anc and b′n = bnc + d. This means that G (x) is also the non-
degenerate distribution of Yn:n, and a′n and b′n are the normalizing constants.
For instance, if we consider the distribution function N

(
µ, σ2

)
, we deduce

that the normalizing constants are:

an = σ (2 lnn)
−1/2

and:
bn = µ+ σ

(
4 lnn− ln (4π) + ln lnn

2
√

2 lnn

)
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TABLE 16.4: Maximum domain of attraction and normalizing constants of some distribution functions

Distribution G (x) an bn

E (λ) Λ λ−1 λ−1 lnn
G (α, β) Λ β−1 β−1 (lnn+ (α− 1) ln (lnn)− ln Γ (α))

N (0, 1) Λ (2 lnn)
−1/2 4 lnn− ln (4π)− ln (lnn)

2
√

2 lnn

LN
(
µ, σ2

)
Λ σ (2 lnn)

−1/2
bn exp

(
µ+ σ

(
4 lnn− ln (4π) + ln lnn

2
√

2 lnn

))

Pa (α, x−) Φα x−n
1/α 0

LG (α, β) Φβ

(
n (lnn)

α−1
)1/β

Γ (α)
0

Tν Φν T−1
ν

(
1− n−1

)
0

U[0,1] Ψ1 n−1 1

B (α, β) Ψα

(
nΓ (α+ β)

Γ (α) Γ (β + 1)

)−1/β

1
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Remark 64 The normalizing constants are uniquely defined. In the case
of the Gaussian distribution N (0, 1), they are equal to an = h (bn) =
bn/

(
1 + b2n

)
and bn = Φ−1

(
1− n−1

)
. In Table ??, we report an approxi-

mation, which is not necessarily unique. For instance, Gasull et al. (2015)
propose the following alternative value of bn:

bn ≈

√
ln

(
n2

2π

)
− ln

(
ln

(
n2

2π

))
+

ln (0.5 + lnn2)− 2

ln (n2)− ln (2π)

and show that this solution is more accurate than the classical approximation.

16.2.3 Generalized extreme value distribution

16.2.3.1 Definition

From a statistical point of view, the previous results of the extreme value
theory are difficult to use. Indeed, they are many issues concerning the choice
of the distribution function, the normalizing constants or the convergence rate
as explained by Coles (2001):

“The three types of limits that arise in Theorem 2 have distinct
forms of behavior, corresponding to the different forms of tail be-
haviour for the distribution function F of theXi. This can be made
precise by considering the behavior of the limit distribution G at
x+, its upper end-point. For the Weibull distribution x+ is finite,
while for both the Fréchet and Gumbel distributions x+ = ∞.
However, the density of G decays exponentially for the Gumbel
distribution and polynomially for the Fréchet distribution, corre-
sponding to relatively different rates of decay in the tail of F. It
follows that in applications the three different families give quite
different representations of extreme value behavior. In early ap-
plications of extreme value theory, it was usual to adopt one of
the three families, and then to estimate the relevant parameters of
that distribution. But there are two weakness: first, a technique is
required to choose which of the three families is most appropriate
for the data at hand; second, once such a decision is made, sub-
sequent inferences presume this choice to be correct, and do not
allow for the uncertainty such a selection involves, even though
this uncertainty may be substantial”.

In practice, the statistical inference on extreme values takes another route.
Indeed, the three types can be combined into a single distribution function:

G (x) = exp

{
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
}

defined on the support ∆ =
{
x : 1 + ξσ−1 (x− µ) > 0

}
. It is known as the
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generalized extreme value distribution and we denote it by GEV (µ, σ, ξ). We
obtain the following cases:

• the limit case ξ → 0 corresponds to the Gumbel distribution;

• ξ = −α−1 > 0 defines the Fréchet distribution;

• the Weibull distribution is obtained by considering ξ = −α−1 < 0.

We also notice that the parameters µ and σ are the limits of the normalizing
constants bn and an. The corresponding density function is equal to:

g (x) =
1

σ

(
1 + ξ

(
x− µ
σ

))−(1+ξ)/ξ

exp

{
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
}

It is represented in Figure 16.10 for various values of parameters. We notice
that µ is a parameter of localization, σ controls the standard deviation and
ξ is related to the tail of the distribution. The parameters can be estimated
using the method of maximum likelihood and we obtain;

`t = − lnσ −
(

1 + ξ

ξ

)
ln

(
1 + ξ

(
xt − µ
σ

))
−
(

1 + ξ

(
xt − µ
σ

))−1/ξ

where xt is the observed maximum for the tth period.
We consider again the example of the MSCI USA index. Using daily re-

turns, we calculate the block maximum for each period of 22 trading days. We
then estimate the GEV distribution using the method of maximum likelihood.
For the period 1995-2015, we obtain µ̂ = 0.0149, σ̂ = 0.0062 and ξ̂ = 0.3736.
In Figure 16.11, we compared the estimated GEV distribution with the dis-
tribution function F22:22 (x) when we assume that daily returns are Gaussian.
We notice that the Gaussian hypothesis largely underestimates extreme events
as illustrated by the quantile function in the table below:

α 90% 95% 96% 97% 98% 99%

Gaussian 3.26% 3.56% 3.65% 3.76% 3.92% 4.17%
GEV 3.66% 4.84% 5.28% 5.91% 6.92% 9.03%

For instance, the probability is 1% to observe a maximum daily return during a
period of one month larger than 4.17% in the case of the Gaussian distribution
and 9.03% in the case of the GEV distribution.

16.2.3.2 Estimating the value-at-risk

Let us consider a portfolio w, whose mark-to-market value is Pt (w) at
time t. We remind that the P&L between t and t+ 1 is equal to:

Π (w) = Pt+1 (w)− Pt (w)

= Pt (w)×R (w)
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FIGURE 16.10: Probability density function of the GEV distribution

FIGURE 16.11: Probability density function of the maximum return R22:22
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where R (w) is the daily return of the portfolio. If we note F̂ the estimated
probability distribution of R (w), the expression of the value-at-risk at the
confidence level α is equal to:

VaRα (w) = −Pt (w)× F̂−1 (1− α)

We now estimate the GEV distribution Ĝ of the maximum of −R (w) for
a period of n trading days12. We have to define the confidence level αGEV

when we consider block minima of daily returns that corresponds to the same
confidence level α when we consider daily returns. For that, we assume that
the two exception events have the same return period, implying that:

1

1− α
× 1 day =

1

1− αGEV
× n days

We deduce that:

αGEV = 1− (1− α)× n

It follows that the value-at-risk calculated with the GEV distribution is equal
to13:

VaRα (w) = P (t)× Ĝ−1 (αGEV)

We consider four portfolios invested in the MSCI USA index and the MSCI
EM index: (1) long on the MSCI USA, (2) long on the MSCI EM index, (3)
long on the MSCI USA and short on the MSCI EM index and (4) long on
the MSCI EM index and short on the MSCI USA index. Using daily returns
from January 1995 to December 2015, we estimate the daily value-at-risk of
these portfolios for different confidence level α. We report the results in Table
16.5 for Gaussian and historical value-at-risk and compare them with those
calculated with the GEV approach. In this case, we estimate the parameters of
the extreme value distribution using block maxima of 22 trading days. When
we consider a 99% confidence level, the lowest value is obtained by the GEV
method followed by Gaussian and historical methods. For higher quantile, the
GEV VaR is between the Gaussian VaR and the historical VaR. The value-
at-risk calculated with the GEV approach can therefore be interpreted as a
parametric value-at-risk, which is estimated using only tail events.

12We model the maximum of the opposite of daily returns, because we are interested in
extreme losses, and not in extreme profits.

13The inverse function of the probability distribution GEV (µ, σ, ξ) is equal to:

G−1 (α) = µ−
σ

ξ

(
1− (− lnα)−ξ

)
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TABLE 16.5: Comparing Gaussian, historical and GEV value-at-risk

VaR α Long US Long EM Long US Long EM
Short EM Short US

99.0% 2.88% 2.83% 3.06% 3.03%
Gaussian 99.5% 3.19% 3.14% 3.39% 3.36%

99.9% 3.83% 3.77% 4.06% 4.03%

99.0% 3.46% 3.61% 3.37% 3.81%
Historical 99.5% 4.66% 4.73% 3.99% 4.74%

99.9% 7.74% 7.87% 6.45% 7.27%
99.0% 2.64% 2.61% 2.72% 2.93%

GEV 99.5% 3.48% 3.46% 3.41% 3.82%
99.9% 5.91% 6.05% 5.35% 6.60%

16.2.4 Peak over threshold

16.2.4.1 Definition

The estimation of the GEV distribution is a “block component-wise” ap-
proach. This means that from a sample of random variates, we build a sample
of maxima by considering blocks with the same length. This implies a loss of
information, because some blocks may contain several extreme events whereas
some other blocks may not be impacted by extremes. Another approach con-
sists in using the “peak over threshold” (POT) method. In this case, we are
interested in estimating the distribution of exceedance over a certain threshold
u:

Fu(x) = Pr {X − u ≤ x | X > u}
where 0 ≤ x < x0 − u and x0 = sup {x ∈ R : F(x) < 1}. Fu(x) is also called
the conditional excess distribution function. It is also equal to:

Fu(x) = 1− Pr {X − u ≤ x | X ≤ u}

= 1−
(

1− F (u+ x)

1− F (u)

)
=

F(u+ x)− F(u)

1− F(u)

Pickands (1975) showed that, for very large u, Fu(x) follows a generalized
Pareto distribution (GPD):

Fu(x) ≈ H (x)

where14:

H (x) = 1−
(

1 +
ξx

σ

)−1/ξ

14If ξ → 0, we have H (x) = 1− exp (−x/σ).



428 Lecture Notes on Risk Management & Financial Regulation

The distribution function GPD (σ, ξ) depends on two parameters: σ is the
scale parameter and ξ is the shape parameter.

Exercise 72 If F is an exponential distribution E (λ), we have:

1− F (u+ x)

1− F (u)
= exp (−λx)

It is the GPD where σ = 1/λ and ξ = 0.

Exercise 73 If F is a uniform distribution, we have:

1− F (u+ x)

1− F (u)
= 1− x

1− u

It corresponds to the generalized Pareto distribution with the following param-
eters: σ = 1− u and ξ = −1.

In fact, there is a strong link between the block maxima approach and the
peak over threshold method. Suppose that Xn:n ∼ GEV (µ, σ, ξ). It follows
that:

Fn (x) ≈ exp

{
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
}

We deduce that:

n ln F (x) ≈ −
(

1 + ξ

(
x− µ
σ

))−1/ξ

Using the approximation ln F (x) ≈ − (1− F (x)) for large x, we obtain:

1− F (x) ≈ 1

n

(
1 + ξ

(
x− µ
σ

))−1/ξ

We find that Fu(x) is a generalized Pareto distribution GPD (σ̃, ξ):

Pr {X > u+ x | X > u} =
1− F (u+ x)

1− F (u)

=

(
1 +

ξx

σ̃

)−1/ξ

where:
σ̃ = σ + ξ (u− µ)

Therefore, we have a duality between GEV and GPD distribution functions:
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“[...] if block maxima have approximating distribution G, then
threshold excesses have a corresponding approximate distribution
within the generalized Pareto family. Moreover, the parameters
of the generalized Pareto distribution of threshold excesses are
uniquely determined by those of the associated GEV distribution
of block maxima. In particular, the parameter ξ is equal to that
of the corresponding GEV distribution. Choosing a different, but
still large, block size size n would affect the values of the GEV
parameters, but not those of the corresponding generalized Pareto
distribution of threshold excesses: ξ is invariant to block size, while
the calculation of σ̃ is unperturbed by the changes in µ and σ which
are self-compensating” (Coles, 2001, page 75).

The estimation of the parameters (σ, ξ) is not obvious because it depends
on the value taken by the threshold u. It must be sufficiently large to apply
the previous theorem, but we also need enough data to obtain good estimates.
We notice that the mean residual life e (u) is a linear function of u:

e (u) = E [X − u | X > u]

=
σ + ξu

1− ξ

when ξ < 1. If the GPD approximation is valid for a value u0, it is therefore
valid for any value u > u0. To determine u0, we can use a mean residual life
plot, which consists in plotting u against the empirical mean excess ê (u):

ê (u) =

∑n
i=1 (xi − u)

+∑n
i=1 1 {xi > u}

Once u0 is found, we estimate the parameters (σ, ξ) by the method of maxi-
mum likelihood or linear regression15.

Let us consider our previous example. In Figure 16.12, we have reported
the mean residual life plot for the left tail of the four portfolios16. The deter-
mination of u0 consists in finding linear relationships. We have a first linear
relationship between u = −3% and u = −1%, but it is not valid because it is
followed by a change in slope. We prefer to consider that the linear relation-
ship is valid for u ≥ 2%. By assuming that u0 = 2% for all the four portfolios,
we obtain the estimates given in Table 16.6.

15In this case, we estimate the linear model ê (u) = a+ bu+ ε for u ≥ u0 and deduce that
σ̂ = â/

(
1 + b̂

)
and ξ̂ = b̂/

(
1 + b̂

)
.

16This means that ê (u) is calculated using the portfolio’s loss, that is the opposite of the
portfolio’s return.
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FIGURE 16.12: Mean residual life plot

TABLE 16.6: Estimation of the generalized Pareto distribution

Parameter Long US Long EM Long US Long EM
Short EM Short US

â 0.834 1.029 0.394 0.904

b̂ 0.160 0.132 0.239 0.142
σ̂ 0.719 0.909 0.318 0.792

ξ̂ 0.138 0.117 0.193 0.124
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16.2.4.2 Estimating the expected shortfall

We remind that:

Fu(x) =
F(u+ x)− F(u)

1− F(u)
≈ H (x)

where H ∼ GPD (σ, ξ). We deduce that:

F (x) = F (u) + (1− F (u))× Fu (x− u)

≈ F (u) + (1− F (u))×H (x− u)

We consider a sample of size n. We note nu the number of observations whose
the value xi is larger than the threshold u. The non-parametric estimate of
F (u) is then equal to:

F̂ (u) = 1− nu
n

Therefore, we obtain the following semi-parametric estimate of F (x) for x
larger than u:

F̂ (x) = F̂ (u) +
(

1− F̂ (u)
)
× Ĥ (x− u)

=
(

1− nu
n

)
+
nu
n

1−

(
1 +

ξ̂ (x− u)

σ̂

)−1/ξ̂


= 1− nu
n

(
1 +

ξ̂ (x− u)

σ̂

)−1/ξ̂

We can interpret F̂ (x) as the historical estimate of the distribution tail that
is improved by the extreme value theory. We deduce that:

VaRα = F̂−1 (α)

= u+
σ̂

ξ̂

((
n

nu
(1− α)

)−ξ̂
− 1

)
and:

ESα = E [X | X > VaRα]

= VaRα +E [X −VaRα | X > VaRα]

= VaRα +
σ̂ + ξ̂ (VaRα−u)

1− ξ̂

=
VaRα

1− ξ̂
+
σ̂ − ξ̂u
1− ξ̂

=
u

1− ξ̂
+

σ̂(
1− ξ̂

)
ξ̂

((
n

nu
(1− α)

)−ξ̂
− 1

)
+
σ̂ − ξ̂u
1− ξ̂
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TABLE 16.7: Estimating value-at-risk and expected shortfall using the gen-
eralized Pareto distribution

Risk
α Long US Long EM Long US Long EM

measure Short EM Short US
99.0% 3.20% 3.42% 2.56% 3.43%

VaR 99.5% 3.84% 4.20% 2.88% 4.13%
99.9% 5.60% 6.26% 3.80% 6.02%

99.0% 4.22% 4.64% 3.09% 4.54%
ES 99.5% 4.97% 5.52% 3.48% 5.34%

99.9% 7.01% 7.86% 4.62% 7.49%

Finally, we obtain:

ESα = u− σ̂

ξ̂
+

σ̂(
1− ξ̂

)
ξ̂

(
n

nu
(1− α)

)−ξ̂

We consider again the example of the four portfolios with exposures on
US and EM equities. In the sample, we have 3 815 observations, whereas the
value taken by nu when u is equal to 2% is 171, 161, 174 and 195 respectively.
Using the estimates given in Table 16.6, we calculate the daily value-at-risk
and expected shortfall of the four portfolios. The results are reported in Table
16.7. If we compare them with those obtained in Table 16.5, we notice that
the GPD VaR is close to the GEV VaR.

16.3 Multivariate extreme value theory

The extreme value theory is generally formulated and used in the univari-
ate case. It can be easily extended to the multivariate case, but its imple-
mentation is more difficult. This section is essentially based on the works of
Deheuvels (1978), Galambos (1987) and Joe (1997).

16.3.1 Multivariate extreme value distributions

16.3.1.1 Extreme value copulas

An extreme value (EV) copula satisfies the following relationship:

C
(
ut1, . . . , u

t
n

)
= Ct (u1, . . . , un)
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for all t > 0. For instance, the Gumbel copula is an EV copula:

C
(
ut1, u

t
2

)
= exp

(
−
((
− lnut1

)θ
+
(
− lnut2

)θ)1/θ
)

= exp

(
−
(
tθ
(

(− lnu1)
θ

+ (− lnu2)
θ
))1/θ

)
=

(
exp

(
−
(

(− lnu1)
θ

+ (− lnu2)
θ
)1/θ

))t
= Ct (u1, u2)

but it is not the case of the Farlie-Gumbel-Morgenstern copula:

C
(
ut1, u

t
2

)
= ut1u

t
2 + θut1u

t
2

(
1− ut1

) (
1− ut2

)
= ut1u

t
2

(
1 + θ − θut1 − θut2 + θut1u

t
2

)
6= ut1u

t
2 (1 + θ − θu1 − θu2 + θu1u2)

t

6= Ct (u1, u2)

The term “extreme value copula” suggests a relationship between the ex-
treme value theory and these copula functions. Let X = (X1, . . . , Xn) be a
random vector of dimension n. We note Xm:m the random vector of maxima:

Xm:m =

 Xm:m,1

...
Xm:m,n


and Fm:m the corresponding distribution function:

Fm:m (x1, . . . , xn) = Pr {Xm:m,1 ≤ x1, . . . , Xm:m,n ≤ xn}

The multivariate extreme value (MEV) theory considers the asymptotic be-
havior of the non-degenerate distribution function G such that:

lim
m→∞

Pr

(
Xm:m,1 − bm,1

am,1
≤ x1, . . . ,

Xm:m,n − bm,n
am,n

≤ xn
)

= G (x1, . . . , xn)

Using Sklar’s theorem, there exists a copula function C 〈G〉 such that:

G (x1, . . . , xn) = C 〈G〉 (G1 (x1) , . . . ,Gn (xn))

It is obvious that the margins G1, . . . ,Gn satisfy the Fisher-Tippet theorem,
meaning that the margins of a multivariate extreme value distribution can
only be Gumbel, Fréchet or Weibull distribution functions. For the copula
C 〈G〉, we have the following result:

Theorem 6 C 〈G〉 is an extreme value copula.
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With the copula representation, we can then easily define MEV distribu-
tions. For instance, if we consider the random vector (X1, X2), whose joint
distribution function is:

F (x1, x2) = exp

(
−
(

(− ln Φ (x1))
θ

+ (− lnx2)
θ
)1/θ

)
we notice that X1 is a Gaussian random variable and X2 is a uniform random
variable. We conclude that the corresponding limit distribution function of
maxima is:

G (x1, x2) = exp

(
−
(

(− ln Λ (x1))
θ

+ (− ln Ψ1 (x2))
θ
)1/θ

)
In Figure 16.13, we have reported the contour plot of four MEV distribu-
tion functions, whose margins are GEV (0, 1, 1) and GEV (0, 1, 1.5). For the
dependence function, we have considered the Gumbel-Hougaard copula and
calibrated the parameter θ with respect to the Kendall’s tau.

FIGURE 16.13: Multivariate extreme value distributions

16.3.1.2 Deheuvels-Pickands representation

Let D be a multivariate distribution function, whose survival margins
are exponential and the dependence is an extreme value copula. By using
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the relationship17 C (u1, . . . , un) = C
(
e−ũ1 , . . . , e−ũn

)
= D (ũ1, . . . , ũn), we

have Dt (ũ) = D (tũ). Therefore, D is a min-stable multivariate exponential
(MSMVE) distribution.

Theorem 7 (Deheuvels/Pickands MSMVE representation) Let D (ũ)
be a survival function with exponential margins. D satisfies the relationship:

− ln D (tũ) = −t ln D (ũ) ∀ t > 0

if and only if the representation of D is:

− ln D (ũ) =

∫
· · ·
∫
Sn

max
1≤i≤n

(qiũi) dS (q) ∀ ũ ≥ 0

where Sn is the n-dimensional unit simplex and S is a finite measure on Sn.

This is the formulation18 given by Joe (1997). Sometimes, the De-
heuvels/Pickands representation is presented using a dependence function
B (w) defined by:

D (ũ) = exp

(
−

(
n∑
i=1

ũi

)
B (w1, . . . , wn)

)

B (w) =

∫
· · ·
∫
Sn

max
1≤i≤n

(qiwi) dS (q)

where wi = (
∑n
i=1 ũi)

−1
ũi. Tawn (1990) showed that B is a convex function

and satisfies the following condition:

max (w1, . . . , wn) ≤ B (w1, . . . , wn) ≤ 1 (16.4)

We deduce that an extreme value copula satisfies the PQD property:

C⊥ ≺ C ≺ C+

In the bivariate case, the formulation can be simplified because the con-
vexity of B and the condition (16.4) are sufficient (Tawn, 1988). We have:

C (u1, u2) = D (ũ1, ũ2)

= exp

(
− (ũ1 + ũ2)B

(
ũ1

ũ1 + ũ2
,

ũ2

ũ1 + ũ2

))
= exp

(
ln (u1u2)B

(
lnu1

ln (u1u2)
,

lnu2

ln (u1u2)

))
= exp

(
ln (u1u2)A

(
lnu1

ln (u1u2)

))
where A (w) = B (w, 1− w). A is a convex function where A (0) = A (1) = 1
and satisfies max (w, 1− w) ≤ A (w) ≤ 1.

17We recall that ũ = − lnu.
18Note that it is similar to Proposition 5.11 of Resnick (1987), although the author does

not use copulas.
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TABLE 16.8: List of extreme value copulas

Copula θ C (u1, u2) A (w)

C⊥ u1u2 1

Gumbel [1,∞) exp
(
−
(
ũθ1 + ũθ2

)1/θ) (
wθ + (1− w)

θ
)1/θ

Gumbel II [0, 1] u1u2 exp

(
θ
ũ1ũ2

ũ1 + ũ2

)
θw2 − θw + 1

Galambos [0,∞) u1u2 exp
((
ũ−θ1 + ũ−θ2

)−1/θ
)

1−
(
w−θ + (1− w)

−θ
)−1/θ

Hüsler-Reiss [0,∞) exp (−ũ1ϑ (u1, u2; θ)− ũ2ϑ (u2, u1; θ)) wκ (w; θ) + (1− w)κ (1− w; θ)

Marshall-Olkin [0, 1]
2

u1−θ1
1 u1−θ2

2 min
(
uθ11 , u

θ2
2

)
max (1− θ1w, 1− θ2 (1− w))

C+ min (u1, u2) max (w, 1− w)

ϑ (u1, u2; θ) = Φ
(

1
θ + θ

2 ln (lnu1/ lnu2)
)

κ (w; θ) = ϑ (w, 1− w; θ)

Source: Ghoudi et al. (1998).
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Example 74 For the Gumbel copula, we have:

− ln D (ũ1, ũ2) =
(
ũθ1 + ũθ2

)1/θ
B (w1, w2) =

(
ũθ1 + ũθ2

)1/θ
(ũ1 + ũ2)

=
(
wθ1 + wθ2

)1/θ
A (w) =

(
wθ + (1− w)

θ
)1/θ

We verify that a bivariate EV copula satisfies the PQD property:

max (w, 1− w) ≤ A (w) ≤ 1

⇔ max

(
lnu1

ln (u1u2)
,

lnu2

ln (u1u2)

)
≤ A

(
lnu1

ln (u1u2)

)
≤ 1

⇔ min (lnu1, lnu2) ≥ ln (u1u2)A

(
lnu1

ln (u1u2)

)
≥ ln (u1u2)

⇔ min (u1, u2) ≥ exp

[
ln (u1u2)A

(
lnu1

ln (u1u2)

)]
≥ u1u2

⇔ C+ � C � C⊥

When the extreme values are independent, we have A (w) = 1 whereas the
case of perfect dependence corresponds to A (w) = max (w, 1− w):

C (u1, u2) = exp

[
ln (u1u2) max

(
lnu1

ln (u1u2)
,

lnu2

ln (u1u2)

)]
= min (u1, u2)

= C+ (u1, u2)

In Table 16.8, we have reported the dependence function A (w) of the most
used EV copula functions.

16.3.2 Maximum domain of attraction

Let F be a multivariate distribution function whose margins are F1, . . . ,Fn
and the copula is C 〈F〉. We note G the corresponding multivariate extreme
value distribution, G1, . . . ,Gn the margins of G and C 〈G〉 the associated cop-
ula function. We can show that F ∈ MDA (G) if and only if Fi ∈ MDA (Gi)
for all i = 1, . . . , n and C 〈F〉 ∈ MDA (C 〈G〉). Previously, we have seen how
to characterize the max-domain of attraction in the univariate case and how
to calculate the normalizing constants. These constants remains the same in
the multivariate case, meaning that the only difficulty is to determine the EV
copula C 〈G〉.

Theorem 8 C 〈F〉 ∈ MDA (C 〈G〉) if C 〈F〉 satisfies the following relation-
ship:

lim
t→∞

Ct 〈F〉
(
u

1/t
1 , . . . , u1/t

n

)
= C 〈G〉 (u1, . . . , un)
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If C 〈F〉 is an EV copula, then C 〈F〉 ∈ MDA (C 〈F〉).

We can show that an equivalent condition is:

lim
u→0

1−C 〈F〉 ((1− u)
w1 , . . . , (1− u)

wn)

u
= B (w1, . . . , wn)

In the bivariate case, we obtain:

lim
u→0

1−C 〈F〉
(

(1− u)
1−t

, (1− u)
t
)

u
= A (t)

for all t ∈ [0, 1].

Example 75 We consider the random vector (X1, X2) defined by the follow-
ing distribution function:

F (x1, x2) =
((

1− e−x1
)−θ

+ x−θ2 − 1
)−1/θ

on [0,∞]× [0, 1]. The margins of F (x1, x2) are F1 (x1) = F (x1, 1) = 1− e−x1

and F2 (x2) = F (∞, x2) = x2. X1 is an exponential random variable and X2

is a uniform random variable. We know that

lim
n→∞

Pr

(
Xn:n,1 − lnn

1
≤ x1

)
= Λ (x1)

and:
lim
n→∞

Pr

(
Xn:n,2 − 1

n−1
≤ x2

)
= Ψ1 (x2)

The dependence function of F is the Clayton copula: C 〈F〉 (u1, u2) =(
u−θ1 + u−θ2 − 1

)−1/θ
. We have:

lim
u→0

1−C 〈F〉
(

(1− u)
t
, (1− u)

1−t
)

u
= lim

u→0

1− (1 + θu+ o (u))
−1/θ

u

= lim
u→0

u+ o (u)

u
= 1

We deduce that C 〈G〉 = C⊥. We obtain finally:

G (x1, x2) = lim
n→∞

Pr {Xn:n,1 − lnn ≤ x1, n (Xn:n,2 − 1) ≤ x2}

= Λ (x1) Ψ1 (x2)

= exp
(
−e−x1

)
exp (x2)

If we change the copula C 〈F〉, only the copula C 〈G〉 is modified. For instance,
when C 〈F〉 is the Gaussian copula with parameter ρ < 1, then G (x1, x2) =
exp (−e−x1) exp (x2). When the copula parameter ρ is equal to 1, we obtain
G (x1, x2) = min (exp (−e−x1) , exp (x2)). When C 〈F〉 is the Gumbel copula,

the MEV distribution becomes G (x1, x2) = exp

(
−
(
e−θx1 + (−x2)

θ
)1/θ

)
.
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16.3.3 Tail dependence of extreme values

We can show that the (upper) tail dependence of C 〈G〉 is equal to the
(upper) tail dependence of C 〈F〉:

λ+ (C 〈G〉) = λ+ (C 〈F〉)

This implies that extreme values are independent if the copula function C 〈F〉
has no (upper) tail dependence.

16.4 Exercises

16.4.1 Uniform order statistics

We assume that X1, . . . , Xn are independent uniform random variables.

1. Show that the density function of the order statistic Xi:n is:

fi:n (x) =
Γ (i) Γ (n− i+ 1)

Γ (n+ 1)
xi−1 (1− x)

n−i

2. Calculate the mean E [Xi:n].

3. Show that the variance is equal to:

var (Xi:n) =
i (n− i+ 1)

(n+ 1)
2

(n+ 2)

4. We consider 10 samples of 8 independent observations from the U[0,1]

probability distribution:

Sample Observation
1 2 3 4 5 6 7 8

1 0.24 0.45 0.72 0.14 0.04 0.34 0.94 0.55
2 0.12 0.32 0.69 0.64 0.31 0.25 0.97 0.57
3 0.69 0.50 0.26 0.17 0.50 0.85 0.11 0.17
4 0.53 0.00 0.77 0.58 0.98 0.15 0.98 0.03
5 0.89 0.25 0.15 0.62 0.74 0.85 0.65 0.46
6 0.74 0.65 0.86 0.05 0.93 0.15 0.25 0.07
7 0.16 0.12 0.63 0.33 0.55 0.61 0.34 0.95
8 0.96 0.82 0.01 0.87 0.57 0.11 0.14 0.47
9 0.68 0.83 0.73 0.78 0.27 0.85 0.55 0.57
10 0.89 0.94 0.91 0.28 0.99 0.40 0.99 0.68

For each sample, find the order statistics. Calculate the empirical mean
and standard deviation of Xi:8 for i = 1, . . . , 8 and compare these values
with the theoretical results.
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5. We assume that n is odd, meaning that n = 2k + 1. We consider the
median statistic Xk+1:n. Show that the density function of Xi:n is right
asymmetric if i ≤ k, symmetric about .5 if i = k+1 and left asymmetric
otherwise.

6. We now assume that the density function of X1, . . . , Xn is symmetric.
What becomes the results obtained in Question 5?

16.4.2 Order statistics and return period

1. Let X and F be the daily return of a portfolio and the associated
probability distribution. We note Xn:n the maximum of daily returns
for a period of n trading days. Using the standard assumptions, define
the cumulative probability distribution Fn:n of Xn:n if we suppose that
X ∼ N

(
µ, σ2

)
.

2. How could we test the hypothesis H0 : X ∼ N
(
µ, σ2

)
using Fn:n?

3. Define the notion of return period. What is the return period associated
to the statistics F−1 (99%), F−1

1:1 (99%), F−1
5:5 (99%) and F−1

21:21 (99%)?

4. We consider the random variable X20:20. Find the confidence level α
which ensures that the return period associated to the quantile F−1

20:20 (α)
is equivalent to the return period of the daily value-at-risk with a 99.9%
confidence level.

16.4.3 Extreme order statistics of exponential random vari-
ables

1. We note τ ∼ E (λ). Show that:

Pr {τ > t | τ > s} = Pr {τ > t− s}

with t > s. Comment on this result.

2. Let τ i be the random variable of distribution E (λi). Calculate the prob-
ability distribution of min (τ 1, . . . , τn) and max (τ 1, . . . , τn) in the in-
dependent case. Show that:

Pr {min (τ 1, . . . , τn) = τi} =
λi∑n
j=1 λj

3. Same question if the random variables τ 1, . . . , τn are comonotone.

16.4.4 Construction of a stress scenario with the GEV dis-
tribution

1. We note an and bn the normalization constraints and G the limit dis-
tribution of the Fisher-Tippet theorem.
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(a) Find the limit distribution G when X ∼ E (λ), an = λ−1 and
bn = λ−1 lnn.

(b) Same question when X ∼ U[0,1], an = n−1 and bn = 1− n−1.

(c) Same question when X is a Pareto distribution:

F (x) = 1−
(

θ

θ + x

)α
,

an = θα−1n1/α and bn = θn1/α − θ.

2. We denote by G the GEV probability distribution:

G (x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

What is the interest of this probability distribution? Write the log-
likelihood function associated to the sample {x1, . . . , xT }.

3. Show that for ξ → 0, the distribution G tends toward the Gumbel
distribution:

Λ (x) = exp

(
− exp

(
−
(
x− µ
σ

)))
4. We consider the minimum value of daily returns of a portfolio for a pe-

riod of n trading days. We then estimate the GEV parameters associated
to the sample of the opposite of the minimum values. We assume that
ξ is equal to 1.

(a) Show that we can approximate the portfolio loss (in %) associated
to the return period T with the following expression:

r (T ) ' −
(
µ̂+

(
t

n
− 1

)
σ̂

)
where µ̂ and σ̂ are the ML estimates of GEV parameters.

(b) We set n equal to 21 trading days. We obtain the following results
for two portfolios:

Portfolio µ̂ σ̂ ξ

#1 1% 3% 1
#2 10% 2% 1

Calculate the stress scenario for each portfolio when the return
period is equal to one year. Comment on these results.
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16.4.5 Extreme value theory in the bivariate case

1. What is an extreme value (EV) copula C?

2. Show that C⊥ and C+ are EV copulas. Why C− can not be an EV
copula?

3. We define the Gumbel-Houggaard copula as follows:

C (u1, u2) = exp

(
−
[
(− lnu1)

θ
+ (− lnu2)

θ
]1/θ)

with θ ≥ 1. Verify that it is an EV copula.

4. What is the definition of the upper tail dependence λ? What is its use-
fulness in multivariate extreme value theory?

5. Let f (x) and g (x) be two functions such that limx→x0
f (x) =

limx→x0
g (x) = 0. If g′ (x0) 6= 0, L’Hospital’s rule states that:

lim
x→x0

f (x)

g (x)
= lim
x→x0

f ′ (x)

g′ (x)

Deduce that the upper tail dependence λ of the Gumbel-Houggaard
copula is 2− 21/θ. What is the correlation of two extremes when θ = 1?

6. We define the Marshall-Olkin copula as follows:

C (u1, u2) = u1−θ1
1 u1−θ2

2 min
(
uθ11 , u

θ2
2

)
with {θ1, θ2} ∈ [0, 1]

2.

(a) Verify that it is an EV copula.

(b) Find the upper tail dependence λ of the Marshall-Olkin copula.

(c) What is the correlation of two extremes when min (θ1, θ2) = 0?

(d) In which case are two extremes perfectly correlated?

16.4.6 Max-domain of attraction in the bivariate case

1. We consider the following distributions of probability:

Distribution F (x)

Exponential E (λ) 1− e−λx
Uniform U[0,1] x

Pareto P (θ, α) 1−
(

θ
θ+x

)α
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For each distribution, we give the normalization parameters an and bn
of the Fisher-Tippet theorem and the corresponding limit distribution
distribution G (x):

Distribution an bn G (x)

Exponential λ−1 λ−1 lnn Λ (x) = e−e
−x

Uniform n−1 1− n−1 Ψ1 (x− 1) = ex−1

Pareto θα−1n1/α θn1/α − θ Φα

(
1 + x

α

)
= e−(1+ x

α )
−α

We note G (x1, x2) the asymptotic distribution of the bivariate random
vector (X1,n:n, X2,n:n) where X1,i (resp. X2,i) are iid random variables.

(a) What is the expression of G (x1, x2) when X1,i and X2,i are inde-
pendent, X1,i ∼ E (λ) and X2,i ∼ U[0,1]?

(b) Same question when X1,i ∼ E (λ) and X2,i ∼ P (θ, α).

(c) Same question when X1,i ∼ U[0,1] and X2,i ∼ P (θ, α).

2. What becomes the previous results when the dependence function be-
tween X1,i and X2,i is the Normal copula with parameter ρ < 1?

3. Same question when the parameter of the Normal copula is equal to one.

4. Find the expression of G (x1, x2) when the dependence function is the
Gumbel-Houggaard copula.





Chapter 17
Monte Carlo Simulation Methods

17.1 Random variate generation

17.1.1 Copula functions

17.1.1.1 The method of multivariate distributions

17.1.1.2 The method of conditional distributions

17.1.1.3 The method of empirical distributions

17.2 Stochastic process simulation

17.3 Monte Carlo methods

17.4 Exercises

17.4.1 Simulation of an Archimedean copula

We recall that an Archimedean copula has the following expression:

C (u1, u2) = ϕ−1 (ϕ (u1) + ϕ (u2))

where ϕ is the generator function.

1. What are the conditions on ϕ in order to verify that C is a copula?

2. We consider the following dependence functions: C−, C⊥ and C+.
Which copulas are Archimedean? Give the corresponding generator.

3. We assume that ϕ (u) = (− lnu)
θ with θ ≥ 1. Find the corresponding

copula.

4. Calculate the conditional distribution C2|1 associated to the previous
Archimedean copula. Deduce an algorithm to simulate it.

445
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17.4.2 Simulation of the bivariate Normal copula

Let X = (X1, X2) be a standard Gaussian vector with correlation ρ. We
note U1 = Φ (X1) and U2 = Φ (X2).

1. We note Σ the matrix defined as follows:

Σ =

(
1 ρ
ρ 1

)
Calculate the Cholesky decomposition of Σ. Deduce an algorithm to
simulate X.

2. Show that the copula of (X1, X2) is the same that the copula of the
random vector (U1, U2).

3. Deduce an algorithm to simulate the Normal copula with parameter ρ.

4. Calculate the conditional distribution of X2 knowing that X1 = x. Then
show that:

Φ2 (x1, x2; ρ) =

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx

5. Deduce an expression of the Normal copula.

6. Calculate the conditional copula function C2|1. Deduce an algorithm to
simulate the Normal copula with parameter ρ.

7. Show that this algorithm is equivalent to the Cholesky algorithm found
in Question 3.
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Technical Appendix

A.1 Numerical analysis

A.1.1 Linear algebra

Following Horn and Johnson (1991), we recall some definitions about ma-
trices:

• the square matrix A is symmetric if it is equal to its transpose A>;

• the square matrix A is hermitian if it is equal to its own conjugate
transpose A∗, implying that we have Ai,j = conjAj,i;

• we say that A is an orthogonal matrix if we have AA> = A>A = I and
an unitary matrix if we have A∗ = A−1.

A.1.1.1 Eigendecomposition

The λ is an eigenvalue of the n × n matrix A if there exists a non-zero
eigenvector v such that we have Av = λv. Let V denote the matrix composed
of the n eigenvectors. We have:

AV = V Λ

where Λ = diag (λ1, . . . , λn) is the diagonal matrix of eigenvalues. We finally
obtain the eigendecomposition of the matrix A:

A = V ΛV −1 (A.1)

If A is an hermitian matrix, then the matrix V of eigenvectors is unitary. It
follows that:

A = V ΛV ∗

In particular, if A is a symmetric real matrix, we obtain1:

A = V ΛV > (A.2)
1We have:

A> =
(
V ΛV −1

)>
=

(
V −1

)>
ΛV >

We deduce that V −1 = V >.

447
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Remark 65 A related decomposition is the singular value decomposition. Let
A be a rectangular matrix with dimension m× n. We have:

A = UΣV ∗ (A.3)

where U is a m×m unitary matrix, Σ is a m×n diagonal matrix with elements
σi ≥ 0 and V is a n × n. unitary matrix. σi are the singular values of A, ui
are the left singular vectors of A, and vi are the left singular vectors of A.

A.1.1.2 Schur decomposition

The Schur decomposition of the n× n matrix A is equal to:

A = QTQ∗ (A.4)

where Q is a unitary matrix and T is an upper triangular matrix2. This
decomposition is useful to calculate matrix functions.

Let us consider the matrix function in the space M of square matrices:

f : M −→M
A 7−→ B = f (A)

For instance, if f (x) =
√
x and A is positive, we can define the matrix B such

that:
BB∗ = B∗B = A

B is called the square root of A and we note B = A1/2. This matrix function
generalizes the scalar-valued function to the set of matrices. Let us consider
the following Taylor expansion:

f (x) = f (x0) + (x− x0) f ′ (x0) +
(x− x0)

2

2!
f ′′ (x0) + . . .

We can show that if the series converge for |x− x0| < α, then the matrix
f (A) defined by the following expression:

f (A) = f (x0) + (A− x0I) f ′ (x0) +
(A− x0I)

2

2!
f ′′ (x0) + . . .

converges to the matrix B if |A− x0I| < α and we note B = f (A). In the
case of the exponential function, we have:

f (x) = ex =

∞∑
k=0

xk

k!

We deduce that the exponential of the matrix A is equal to:

B = eA =

∞∑
k=0

Ak

k!

2Q and T are also called the transformation matrix and the Schur form of A.
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In a similar way, the logarithm of A is the matrix B such that eB = A and
we note B = lnA.

Let A and B be two n × n square matrices. Using the Taylor expansion,
Golub and Van Loan (2013) show that f

(
A>
)

= f (A)
>, Af (A) = f (A)A

and f
(
B−1AB

)
= B−1f (A)B. It follows that:

eA
>

=
(
eA
)>

and:
eB
−1AB = B−1eAB

If AB = BA, we can also prove that AeB = eBA and eA+B = eAeB = eBeA.

Remark 66 There are different ways to compute numerically f (A). For tran-
scendental functions, we have:

f (A) = Qf (T )Q∗

where A = QTQ∗ is the Schur decomposition of A. Because T is an upper
diagonal matrix, f (T ) is also a diagonal matrix whose elements can be calcu-
lated with Algorithm 9.1.1 of Golub and Van Loan (2013). This algorithm is
reproduced below3.

Algorithm 2 Schur-Parlett matrix function f (A)

Compute the Schur decomposition A = QTQ∗

Initialize F to the matrix 0n×n
for i = 1 : n do
fi,i ← f (ti,i)

end for
for p = 1 : n− 1 do
for i = 1 : n− p do
j ← i+ p
s← ti,j (fj,j − fi,i)
for k = i+ 1 : j − 1 do
s← s+ ti,kfk,j − fi,ktk,j

end for
fi,j ← s/ (tj,j − ti,i)

end for
end for
B ← QFQ∗

return B

Source: Golub and Van Loan (2013), page 519.

3For the exponential matrix, we may prefer to use the Pade approximation method, which
is described in Algorithm 9.3.1 (Scaling and Squaring) of Golub and Van Loan (2013).
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A.1.2 Approximation methods

A.1.2.1 Semidefinite approximation

A.1.2.2 Numerical integration

A.1.2.3 Finite difference method

A.2 Statistics

A.2.1 Probability distributions

A.2.1.1 The normal distribution

Let C be a correlation matrix. We consider the standardized Gaussian
random vector X ∼ N (0, C) of dimension n. We note φn (x;C) the associated
density function defined as:

φn (x;C) = (2π)
−n/2 |C|−1/2

exp

(
−1

2
x>C−1x

)
We deduce that the expression of cumulative density function is:

Φn (x;C) =

∫ x1

−∞
· · ·
∫ x2

−∞
φn (u;C) du

By construction, we have E [X] = 0 and cov (x) = C. In the bivariate case,
we use the notations φ2 (x1, x2; ρ) = φ2 (x;C) and Φ2 (x1, x2; ρ) = Φ2 (x;C)
where ρ = C1,2 is the correlation between the components X1 and X2. In the
univariate case, we also consider the alternative notations φ (x) = φ1 (x; 1)
and Φ (x) = Φ1 (x; 1). The density function reduces then to:

φ (x) =
1√
2π

exp

(
−1

2
x2

)
Concerning the moments, we have µ (X) = 0, σ (X) = 1, γ1 (X) = 0 and
γ2 (X) = 0.

Adding a mean vector µ and a covariance matrix Σ is equivalent to apply
the linear transformation to X:

Y = µ+ σX

where σ = diag
1/2 (Σ).

A.2.1.2 The Student’s t distribution

Let X ∼ N (0,Σ) and V ∼ χ2
ν

/
ν independent of X. We define the multi-

variate Student’s t distribution as the one corresponding to the linear trans-
formation:

Y = V −
1/2X
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The corresponding density function is:

tn (y; Σ, ν) =
Γ ((ν+n)/2)

Γ (ν/2) (νπ)
n/2
|Σ|−1/2

(
1 +

1

ν
y>Σ−1y

)−(ν+n)/2

We note Tn (y; Σ, ν) the cumulative density function:

Tn (y; Σ, ν) =

∫ y1

−∞
· · ·
∫ y2

−∞
tn (u; Σ, ν) du

The first two moments4 of Y are E [Y ] = 0 and cov (Y ) = ν (ν − 2)
−1

Σ.
Adding a mean µ is equivalent to consider the random vector Z = µ+ Y . We
also verify that Y tends to the Gaussian random vector X when the number
of degrees of freedom tends to ∞.

In the univariate case, the standardized density function becomes:

t1 (y; ν) =
Γ ((ν+1)/2)

Γ (ν/2)
√
νπ

(
1 +

y2

ν

)−(ν+1)/2

We also use the alternative notations tν (y) = t1 (y; ν) and Tν (y) = T1 (y; ν).
Concerning the moments5, we obtain µ (Y ) = 0, σ2 (Y ) = ν/ (ν − 2), γ1 (Y ) =
0 and γ2 (Y ) = 6/ (ν − 4).

A.2.1.3 The skew normal distribution

The seminal work of Azzalini (1985) has led to a rich development on
skew distributions with numerous forms, parameterizations and extensions6.
We adopt here the construction of Azzalini and Dalla Valle (1996).

The multivariate case Azzalini and Dalla Valle (1996) define the density
function of the skew normal (or SN) distribution as follows:

f (x) = 2φn (x− ξ; Ω) Φ1

(
η>ω−1 (x− ξ)

)
with ω = diag

1/2 (Ω). We say that X follows a multivariate skew normal distri-
bution with parameters ξ, Ω and η and we write X ∼ SN (ξ,Ω, η). We notice
that the distribution of X ∼ SNn (ξ,Ω,0) is the standard normal distribution
N (ξ,Ω). We verify the property X = ξ + ωY where Y ∼ SN (0, C, η) and
C = ω−1Ωω−1 is the correlation matrix of Ω. Azzalini and Dalla Valle (1996)
demonstrate that the first two moments are:

E [X] = ξ +

√
2

π
ωδ

cov (X) = ω

(
C − 2

π
δδ>

)
ω>

4The second moment is not defined if ν ≤ 2.
5The skewness is not defined if ν ≤ 3 whereas the excess kurtosis is infinite if 2 < ν ≤ 4.
6See for instance Arellano-Valle and Genton (2005) and Lee and McLachlan (2013) for

a review.
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with δ =
(
1 + η>Cη

)−1/2
Cη.

Azzalini and Capitanio (1999) show that Y ∼ SN (0, C, η) has the follow-
ing stochastic representation:

Y =

{
U if U0 > 0
−U otherwise

with: (
U0

U

)
∼ N (0, C+ (δ)) , C+ (δ) =

(
1 δ>

δ C

)
and δ =

(
1 + η>Cη

)−1/2
Cη. We deduce that:

Pr {X ≤ x} = Pr
{
Y ≤ ω−1 (x− ξ)

}
= Pr

{
U ≤ ω−1 (x− ξ) | U0 > 0

}
=

Pr
{
U ≤ ω−1 (x− ξ) , U0 > 0

}
Pr {U0 > 0}

= 2
(
Pr
{
U ≤ ω−1 (x− ξ)

}
− Pr

{
U ≤ ω−1 (x− ξ) , U0 ≤ 0

})
= 2

(
Φn
(
ω−1 (x− ξ) ;C

)
− Φn+1 (u+;C+ (δ))

)
= 2Φn+1 (u+;C+ (−δ))

with u+ =
(
0, ω−1 (x− ξ)

)
. We can therefore use this representation to simu-

late the random vector X ∼ SN (ξ,Ω, η) and compute the cumulative distri-
bution function.

Let A be a m × n matrix and X ∼ SN (ξ,Ω, η). Azzalini and Capitanio
(1999) demonstrate that the linear transformation of a skew normal vector is
still a skew normal vector:

AX ∼ SN (ξA,ΩA, ηA)

with:

ξA = Aξ

ΩA = AΩA>

ηA =
ωAΩ−1

A B>η(
1 + η>

(
C −BΩ−1

A B>
)
η
)1/2

where ω = diag
1/2 (Ω), C = ω−1Ωω, ωA = diag

1/2 (ΩA) and B = ω−1ΩA>.
This property also implies that the marginal distributions of a subset of X is
still a skew normal distribution.

The univariate case When the dimension n is equal to 1, the density
function of X ∼ SN

(
ξ, ω2, η

)
becomes:

f (x) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
η

(
x− ξ
ω

))
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Using the previous stochastic representation, we have:

Pr {X ≤ x} = 2

(
Φ

(
x− ξ
ω

)
− Φ2

(
0,
x− ξ
ω

; δ

))
= 2Φ2

(
0,
x− ξ
ω

;−δ
)

with:
δ =

η√
1 + η2

We note m0 = δ
√

2/π. The moments of the univariate SN distribution are:

µ (X) = ξ + ωm0

σ2 (X) = ω2
(
1−m2

0

)
γ1 (X) =

(
4− π

2

)
m3

0

(1−m2
0)

3/2

γ2 (X) = 2 (π − 3)
m4

0

(1−m2
0)

2

A.2.1.4 The skew t distribution

The multivariate case Let X ∼ SN (0,Ω, η) and V ∼ χ2
ν

/
ν independent

of X. Following Azzalini and Capitanio (2003), the mixture transformation
Y = ξ + V −1/2X has a skew t distribution and we write Y ∼ ST (ξ,Ω, η, ν).
The density function of Y is related to the multivariate t distribution as fol-
lows:

f (y) = 2tn (y − ξ; Ω, ν) T1

(
η>ω−1 (y − ξ)

√
ν + n

Q+ ν
; ν + n

)
with Q = (y − ξ)>Ω−1 (y − ξ). We notice that we have:

Pr {Y ≤ y} = Pr
{
V −1/2X ≤ ω−1 (y − ξ)

}
= Pr

{
V −1/2U ≤ ω−1 (y − ξ) | U0 > 0

}
= 2 Pr

{
V −1/2

(
−U0

U

)
≤
(

0
ω−1 (y − ξ)

)}
= 2

(
Tn

(
ω−1 (y − ξ) ;C, ν

)
−Tn+1 (u+;C+ (δ) , ν)

)
= 2Tn+1 (u+;C+ (−δ) , ν)

with u+ =
(
0, ω−1 (y − ξ)

)
.

Like the multivariate skew normal distribution, the skew t distribution
satisfies the closure property under linear transformation. Let A be a m × n
matrix and Y ∼ SN (ξ,Ω, η). We have:

AY ∼ SN (ξA,ΩA, ηA, νA)
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with:

ξA = Aξ

ΩA = AΩA>

ηA =
ωAΩ−1

A B>η(
1 + η>

(
C −BΩ−1

A B>
)
η
)1/2

νA = ν

where ω = diag
1/2 (Ω), C = ω−1Ωω, ωA = diag

1/2 (ΩA) and B = ω−1ΩA>.
This property also implies that the marginal distributions of a subset of Y is
still a skew t distribution.

The univariate case The density function becomes:

f (y) =
2

ω
t1

(
y − ξ
ω

; ν

)
T1

(
η

(
y − ξ
ω

)√
ν + 1

Q+ ν
; ν + 1

)

with Q = (y − ξ)2
/ω2. To compute the cumulative density function, we use

the following result:

Pr {Y ≤ y} = 2T2

(
0,
y − ξ
ω

;−δ; ν
)

Let m0 and v0 be two scalars defined as follows7:

m0 = δ

√
ν

π
exp

(
ln Γ

(
ν − 1

2

)
− ln Γ

(ν
2

))
v0 =

ν

ν − 2
− µ2

0

As shown by Azzalini and Capitanio (2003), the moments of the univariate
ST distribution are:

µ (Y ) = ξ + ωm0

σ2 (Y ) = ω2v0

γ1 (Y ) = m0v
−3/2
0

(
ν
(
3− δ2

)
ν − 3

− 3ν

ν − 2
+ 2m2

0

)

γ2 (Y ) = m0v
−2
0

(
3ν2

(ν − 2) (ν − 4)
−

4m2
0ν
(
3− δ2

)
ν − 3

+
6m2

0ν

ν − 2
− 3m4

0

)
− 3

7We remind that δ = α
/√

1 + α2 .
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A.2.2 Special results

A.2.2.1 Affine transformation of random vectors

The univariate case Let X be a random variable with probability distri-
bution F. We consider the affine transformation Y = a + bX. If b > 0, the
cumulative probability distribution H of Y is:

H (y) = Pr {Y ≤ y}

= Pr

{
X ≤ y − a

b

}
= F

(
y − a
b

)
and its density function is:

h (y) = ∂yH (y) =
1

b
f

(
y − a
b

)
If b < 0, we obtain:

H (y) = Pr {Y ≤ y}

= Pr

{
X ≥ y − a

b

}
= 1− F

(
y − a
b

)
and:

h (y) = ∂yH (y) = −1

b
f

(
y − a
b

)
The mean and the variance of Y are respectively a + bµ (X) and b2 var (X).
The centered moments are:

E [(Y − µ (Y ))
r
] = brE [(X − µ (X))

r
]

We deduce that the excess kurtosis of Y is the same as for X whereas the
skewness is equal to:

γ1 (Y ) = sgn (b) γ1 (X)

As an illustration, we consider the random variable Y = µ + σX with
X ∼ N

(
µ, σ2

)
and σ > 0. We obtain:

H (y) = Φ

(
y − µ
σ

)
and

h (y) =
1

σ
√

2π
exp−1

2

(
y − µ
σ

)2



456 Lecture Notes on Risk Management & Financial Regulation

We also deduce that
H−1 (α) = µ+ σΦ−1 (α)

For the moments, we obtain µ (Y ) = µ, σ2 (Y ) = σ2, γ1 (Y ) = 0 and γ2 (Y ) =
0.

The multivariate case Let X be a random vector of dimension n, A a
(m× 1) vector and B a (m× n) matrix. We consider the affine transformation
Y = A + BX. The moments verify µ (Y ) = A + Bµ (X) and cov (Y ) =
B cov (X)B>. In the general case, it is not possible to find the distribution
of Y . However, if X ∼ N (µ,Σ), Y is also a normal random vector with
Y ∼ N

(
A+Bµ,BΣB>

)
.

A.2.2.2 Relationship between density and quantile functions

Let F (x) be a cumulative density function. The density function is f (x) =
∂x F (x). We note α = F (x) and x = F−1 (α). We have:

∂ F−1 (F (x))

∂ x
=
∂ F−1 (α)

∂ α

(
∂ F (x)

∂ x

)
= 1

We deduce that:

∂ F−1 (α)

∂ α
=

(
∂ F (x)

∂ x

)−1

=
1

f (F−1 (α))

and:
f (x) =

1

∂α F−1 (F (x))

For instance, we can use this result to compute the moments of the random
variable X with the quantile function instead of the density function:

E [Xr] =

∫ ∞
−∞

xrf (x) dx =

∫ 1

0

(
F−1 (α)

)r
dα

A.2.2.3 Conditional expectation in the case of the Normal distri-
bution

Let us consider a Gaussian random vector defined as follows:(
Y
X

)
∼ N

((
µy
µx

)
,

(
Σyy Σyx
Σxy Σxx

))
The conditional distribution of Y given X = x is a multivariate Normal dis-
tribution. We have:

µy|x = E [Y | X = x]

= µy + ΣyxΣ−1
xx (x− µx)
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and:

Σyy|x = σ2 [Y | X = x]

= Σyy − ΣyxΣ−1
xxΣxy

We deduce that:
Y = µy + ΣyxΣ−1

xx (x− µx) + u

where u is a centered Gaussian random variable with variance σ2 = Σyy|x. It
follows that:

Y =
(
µy − ΣyxΣ−1

xxµx
)︸ ︷︷ ︸

β0

+ ΣyxΣ−1
xx︸ ︷︷ ︸

β>

x+ u

We recognize the linear regression of Y on a constant and a set of exogenous
variables X:

Y = β0 + β>X + u

Moreover, we have:

R2 = 1− σ2

Σyy

=
ΣyxΣ−1

xxΣxy
Σyy

A.2.2.4 Calculation of a useful integral function in credit risk mod-
els

We consider the following integral:

I =

∫ c

−∞
Φ (a+ bx)φ (x) dx

We have:

I =

∫ c

−∞

(
1√
2π

∫ a+bx

−∞
exp

(
−1

2
y2

)
dy

)
φ (x) dx

=
1

2π

∫ c

−∞

∫ a+bx

−∞
exp

(
−y

2 + x2

2

)
dy dx

By considering the change of variables (x, z) = ϕ (x, y) such that z = y − bx,
we obtain8:

I =
1

2π

∫ c

−∞

∫ a

−∞
exp

(
−z

2 + 2bzx+ b2x2 + x2

2

)
dz dx

8We use the fact that the Jacobian of ϕ (x, y) has the following expression:

Jϕ =

(
1 0
−b 1

)
and its determinant |Jϕ| is equal to 1.
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If we consider the new change of variable t =
(
1 + b2

)−1/2
z and use the nota-

tion δ = 1 + b2, we have:

I =

√
δ

2π

∫ c

−∞

∫ a√
1+b2

−∞
exp

(
−δt

2 + 2b
√
δtx+ δx2

2

)
dtdx

=

√
δ

2π

∫ c

−∞

∫ a√
1+b2

−∞
exp

(
−δ

2

(
t2 +

2b√
δ
xt+ x2

))
dtdx

We recognize the expression of the cumulative bivariate Normal distribution9,
whose correlation parameter ρ is equal to −b

/√
δ :∫ c

−∞
Φ (a+ bx)φ (x) dx = Φ2

(
c,

a√
1 + b2

;
−b√

1 + b2

)

9We recall that Φ2 (x, y; ρ) is the cumulative distribution function of the bivariate Gaus-
sian vector (X,Y ) with correlation ρ on the space [−∞, x]× [−∞, y].
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